Tensilely Strained Germanium Nanomembranes as Infrared Optical Gain Media

被引:52
作者
Boztug, C. [1 ]
Sanchez-Perez, J. R. [2 ]
Sudradjat, F. F. [1 ]
Jacobson, R. B. [2 ]
Paskiewicz, D. M. [2 ]
Lagally, M. G. [2 ]
Paiella, R. [1 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Univ Wisconsin, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
nanomembranes; group IV photonics; strain engineering; infrared sources; SILICON NANOMEMBRANES; GE; PERFORMANCE; MEMBRANE;
D O I
10.1002/smll.201201090
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of tensilely strained Ge nanomembranes as mid-infrared optical gain media is investigated. Biaxial tensile strain in Ge has the effect of lowering the direct energy bandgap relative to the fundamental indirect one, thereby increasing the internal quantum efficiency for light emission and allowing for the formation of population inversion, until at a strain of about 1.9% Ge is even converted into a direct-bandgap material. Gain calculations are presented showing that, already at strain levels of about 1.4% and above, Ge films can provide optical gain in the technologically important 2.12.5 m spectral region, with transparency carrier densities that can be readily achieved under realistic pumping conditions. Mechanically stressed Ge nanomembranes capable of accommodating the required strain levels are developed and used to demonstrate strong strain-enhanced photoluminescence. A detailed analysis of the high-strain emission spectra also demonstrates that the nanomembranes can be pumped above transparency, and confirms the prediction that biaxial-strain levels in excess of only 1.4% are required to obtain significant population inversion.
引用
收藏
页码:622 / 630
页数:9
相关论文
共 33 条
[1]   ELECTRON-TRANSPORT AND PRESSURE COEFFICIENTS ASSOCIATED WITH THE L1C AND DELTA-1C MINIMA OF GERMANIUM [J].
AHMAD, CN ;
ADAMS, AR .
PHYSICAL REVIEW B, 1986, 34 (04) :2319-2328
[2]   An electrically pumped germanium laser [J].
Camacho-Aguilera, Rodolfo E. ;
Cai, Yan ;
Patel, Neil ;
Bessette, Jonathan T. ;
Romagnoli, Marco ;
Kimerling, Lionel C. ;
Michel, Jurgen .
OPTICS EXPRESS, 2012, 20 (10) :11316-11320
[3]   STRESS-INDUCED SHIFTS OF FIRST-ORDER RAMAN FREQUENCIES OF DIAMOND AND ZINC-BLENDE-TYPE SEMICONDUCTORS [J].
CERDEIRA, F ;
BUCHENAUER, CJ ;
CARDONA, M ;
POLLAK, FH .
PHYSICAL REVIEW B-SOLID STATE, 1972, 5 (02) :580-+
[4]  
Chuang S. L., 2009, PHYS PHOTONIC DEVICE
[5]  
Coldren L. A., 1995, DIODE LASERS PHOTONI
[6]   Optical gain in single tensile-strained germanium photonic wire [J].
de Kersauson, M. ;
El Kurdi, M. ;
David, S. ;
Checoury, X. ;
Fishman, G. ;
Sauvage, S. ;
Jakomin, R. ;
Beaudoin, G. ;
Sagnes, I. ;
Boucaud, P. .
OPTICS EXPRESS, 2011, 19 (19) :17925-17934
[7]   Control of direct band gap emission of bulk germanium by mechanical tensile strain [J].
El Kurdi, M. ;
Bertin, H. ;
Martincic, E. ;
de Kersauson, M. ;
Fishman, G. ;
Sauvage, S. ;
Bosseboeuf, A. ;
Boucaud, P. .
APPLIED PHYSICS LETTERS, 2010, 96 (04)
[8]   Band structure and optical gain of tensile-strained germanium based on a 30 band k•p formalism [J].
El Kurdi, Moustafa ;
Fishman, Guy ;
Sauvage, Sebastien ;
Boucaud, Philippe .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (01)
[9]   Perfectly tetragonal, tensile-strained Ge on Ge1-ySny buffered Si(100) [J].
Fang, Y. -Y. ;
Tolle, J. ;
Roucka, R. ;
Chizmeshya, A. V. G. ;
Kouvetakis, John ;
D'Costa, V. R. ;
Menendez, Jose .
APPLIED PHYSICS LETTERS, 2007, 90 (06)
[10]   Local-Illuminated Ultrathin Silicon Nanomembranes with Photovoltaic Effect and Negative Transconductance [J].
Feng, Ping ;
Moench, Ingolf ;
Huang, Gaoshan ;
Harazim, Stefan ;
Smith, Elliot J. ;
Mei, Yongfeng ;
Schmidt, Oliver G. .
ADVANCED MATERIALS, 2010, 22 (33) :3667-+