Estimating multiple time-fixed treatment effects using a semi-Bayes semiparametric marginal structural Cox proportional hazards regression model

被引:2
作者
Cole, Stephen R. [1 ]
Edwards, Jessie K. [1 ]
Westreich, Daniel [1 ]
Lesko, Catherine R. [2 ]
Lau, Bryan [2 ]
Mugavero, Michael J. [3 ]
Mathews, W. Christopher [4 ]
Eron, Joseph J., Jr. [5 ]
Greenland, Sander [6 ,7 ]
机构
[1] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Campus Box 7435, Chapel Hill, NC 27510 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
[3] Univ Alabama Birmingham, Sch Med, Dept Med, Birmingham, AL USA
[4] Univ Calif San Diego, Sch Med, Dept Med, San Diego, CA 92103 USA
[5] Univ N Carolina, Sch Med, Dept Med, Chapel Hill, NC USA
[6] UCLA, Dept Epidemiol, Los Angeles, CA USA
[7] UCLA, Dept Stat, Los Angeles, CA USA
关键词
bias; causal inference; cohort study; semi-Bayes; semiparametric; survival analysis; MAXIMUM-LIKELIHOOD; CAUSAL INFERENCE; ANTIRETROVIRAL THERAPY; EPIDEMIOLOGIC RESEARCH; PENALIZED LIKELIHOOD; BIAS REDUCTION; LIMITING RISK; PRIORS; PERSPECTIVES; PENALTIES;
D O I
10.1002/bimj.201600140
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Marginal structural models for time-fixed treatments fit using inverse-probability weighted estimating equations are increasingly popular. Nonetheless, the resulting effect estimates are subject to finite-sample bias when data are sparse, as is typical for large-sample procedures. Here we propose a semi-Bayes estimation approach which penalizes or shrinks the estimated model parameters to improve finite-sample performance. This approach uses simple symmetric data-augmentation priors. Limited simulation experiments indicate that the proposed approach reduces finite-sample bias and improves confidence-interval coverage when the true values lie within the central "hill" of the prior distribution. We illustrate the approach with data from a nonexperimental study of HIV treatments.
引用
收藏
页码:100 / 114
页数:15
相关论文
共 61 条
  • [1] [Anonymous], HIV MED
  • [2] A new perspective on priors for generalized linear models
    Bedrick, EJ
    Christensen, R
    Johnson, W
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) : 1450 - 1460
  • [3] Carlin B. P., 2010, BAYESIAN METHODS DAT
  • [4] Casella G., 2002, STAT INFERENCE
  • [5] Marginal structural models for estimating the effect of highly active antiretroviral therapy initiation on CD4 cell count
    Cole, SR
    Hernán, MA
    Margolick, JB
    Cohen, MH
    Robins, JM
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2005, 162 (05) : 471 - 478
  • [6] Constructing inverse probability weights for marginal structural models
    Cole, Stephen R.
    Hernan, Miguel A.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 168 (06) : 656 - 664
  • [7] Maximum Likelihood, Profile Likelihood, and Penalized Likelihood: A Primer
    Cole, Stephen R.
    Chu, Haitao
    Greenland, Sander
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (02) : 252 - 260
  • [8] Bayesian Posterior Distributions Without Markov Chains
    Cole, Stephen R.
    Chu, Haitao
    Greenland, Sander
    Hamra, Ghassan
    Richardson, David B.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 175 (05) : 368 - 375
  • [9] The Consistency Statement in Causal Inference A Definition or an Assumption?
    Cole, Stephen R.
    Frangakis, Constantine E.
    [J]. EPIDEMIOLOGY, 2009, 20 (01) : 3 - 5
  • [10] Coveney J., 2015, FIRTHLOGIT STATA MOD