Multimodal MR Synthesis via Modality-Invariant Latent Representation

被引:198
作者
Chartsias, Agisilaos [1 ]
Joyce, Thomas [1 ]
Giuffrida, Mario Valerio [1 ,2 ,3 ]
Tsaftaris, Sotirios A. [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Engn, Edinburgh EH8 3FB, Midlothian, Scotland
[2] Alan Turing Inst, London NW1 2DB, England
[3] IMT Lucca, I-55100 Lucca, Italy
基金
英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
Neural network; multi-modality fusion; magnetic resonance imaging (MRI); machine learning; brain; IMAGE SYNTHESIS; RANDOM FOREST; CT;
D O I
10.1109/TMI.2017.2764326
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a multi-input multi-output fully convolutional neural network model for MRI synthesis. The model is robust to missing data, as it benefits from, but does not require, additional input modalities. The model is trained end-to-end, and learns to embed all input modalities into a shared modality-invariant latent space. These latent representations are then combined into a single fused representation, which is transformed into the target output modality with a learnt decoder. We avoid the need for curriculum learning by exploiting the fact that the various input modalities are highly correlated. We also show that by incorporating information from segmentation masks the model can both decrease its error and generate data with synthetic lesions. We evaluate our model on the ISLES and BRATS data sets and demonstrate statistically significant improvements over state-of-the-art methods for single input tasks. This improvement increases further when multiple input modalities are used, demonstrating the benefits of learning a common latent space, again resulting in a statistically significant improvement over the current best method. Finally, we demonstrate our approach on non skull-stripped brain images, producing a statistically significant improvement over the previous best method. Code is made publicly available at https://github.com/agis85/multimodal_brain_synthesis.
引用
收藏
页码:803 / 814
页数:12
相关论文
共 39 条
[1]  
Al-Rfou R., THEANO PYTHON FRAMEW
[2]  
[Anonymous], GEN K FAN MULTIMODAL
[3]  
Bengio Y., 2009, ICML, P41, DOI DOI 10.1145/1553374.1553380
[4]   Pseudo-healthy Image Synthesis for White Matter Lesion Segmentation [J].
Bowles, Christopher ;
Qin, Chen ;
Ledig, Christian ;
Guerrero, Ricardo ;
Gunn, Roger ;
Hammers, Alexander ;
Sakka, Eleni ;
Dickie, David Alexander ;
Hernandez, Maria Valdes ;
Royle, Natalie ;
Wardlaw, Joanna ;
Rhodius-Meester, Hanneke ;
Tijms, Betty ;
Lemstra, Afina W. ;
van der Flier, Wiesje ;
Barkhof, Frederik ;
Scheltens, Philip ;
Rueckert, Daniel .
SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2016, 2016, 9968 :87-96
[5]   Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies [J].
Burgos, Ninon ;
Cardoso, M. Jorge ;
Thielemans, Kris ;
Modat, Marc ;
Pedemonte, Stefano ;
Dickson, John ;
Barnes, Anna ;
Ahmed, Rebekah ;
Mahoney, Colin J. ;
Schott, Jonathan M. ;
Duncan, John S. ;
Atkinson, David ;
Arridge, Simon R. ;
Hutton, Brian F. ;
Ourselin, Sebastien .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (12) :2332-2341
[6]   Learning Aligned Cross-Modal Representations from Weakly Aligned Data [J].
Castrejon, Lluis ;
Aytar, Yusuf ;
Vondrick, Carl ;
Pirsiavash, Hamed ;
Torralba, Antonio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2940-2949
[7]   Correlational Neural Networks [J].
Chandar, Sarath ;
Khapra, Mitesh M. ;
Larochelle, Hugo ;
Ravindran, Balaraman .
NEURAL COMPUTATION, 2016, 28 (02) :257-285
[8]   Extended Modality Propagation: Image Synthesis of Pathological Cases [J].
Cordier, Nicolas ;
Delingette, Herve ;
Le, Matthieu ;
Ayache, Nicholas .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (12) :2598-2608
[9]  
Dosovitskiy Alexey, 2016, ADV NEURAL INFORM PR, V29, DOI DOI 10.48550/ARXIV.1602.02644
[10]   The Importance of Skip Connections in Biomedical Image Segmentation [J].
Drozdzal, Michal ;
Vorontsov, Eugene ;
Chartrand, Gabriel ;
Kadoury, Samuel ;
Pal, Chris .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :179-187