Electrospun polycaprolactone scaffolds for tissue engineering: a review

被引:99
|
作者
Janmohammadi, M. [1 ]
Nourbakhsh, M. S. [2 ]
机构
[1] Semnan Univ, Fac New Sci & Technol, Biomed Engn Biomat, Semnan, Iran
[2] Semnan Univ, Fac Mat & Met Engn, Biomed Engn Biomat, Semnan, Iran
关键词
Electrospinning; nanofibrous scaffolds; polycaprolactone; tissue engineering; NANOFIBROUS SCAFFOLDS; POLY(EPSILON-CAPROLACTONE); MINERALIZATION; CELLS; DIFFERENTIATION; DEGRADATION; MACROPHAGES; FABRICATION; COMPOSITES; PHOSPHATE;
D O I
10.1080/00914037.2018.1466139
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Polycaprolactone is a biodegradable and biocompatible polyester which has a wide range of applications in tissue engineering. Electrospinning, the versatile technique, used for the fabrication of fibrous scaffolds, which is widely used in tissue engineering, due to the ability of fabrication of nano/micro-scale fiber scaffolds. Polycaprolactone nanofiber scaffolds are widely used in tissue engineering and drug delivery. Polycaprolactone can be used in a wide variety of scaffolds construction. In this review, we will discuss the recent advances in the electrospinning of polycaprolactone nanofiber scaffolds in bone, cardiovascular, nerve, and skin tissue engineering. [GRAPHICS] .
引用
收藏
页码:527 / 539
页数:13
相关论文
共 50 条
  • [21] Novel Electrospun Polycaprolactone/Calcium Alginate Scaffolds for Skin Tissue Engineering
    Molina, Maria I. Echeverria I.
    Chen, Chi-An
    Martinez, Jeniree
    Tran, Perry
    Komvopoulos, Kyriakos
    MATERIALS, 2023, 16 (01)
  • [22] Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic acid) (PLGA) Scaffolds for Vascular Tissue Engineering
    Bazgir, Morteza
    Zhang, Wei
    Zhang, Ximu
    Elies, Jacobo
    Saeinasab, Morvarid
    Coates, Phil
    Youseffi, Mansour
    Sefat, Farshid
    MATERIALS, 2021, 14 (17)
  • [23] Electrospun composite polycaprolactone scaffolds for optimized tissue regeneration
    Nelson, M. Tyler
    Keith, Joshua P.
    Li, Bing-Bing
    Stocum, David L.
    Li, Jiliang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2012, 226 (03) : 111 - 121
  • [24] Highly effective electrospun polycaprolactone/layered double hydroxide nanofibrous scaffold for bone tissue engineering
    Dehkordi, Azar Nourian
    Shafiei, Seyedeh Sara
    Chehelgerdi, Mohammad
    Sabouni, Farzaneh
    Sharifi, Esmaeel
    Makvandi, Pooyan
    Nasrollahi, Negar
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 76
  • [25] Protein encapsulated in electrospun nanofibrous scaffolds for tissue engineering applications
    Norouzi, Mohammad
    Soleimani, Masoud
    Shabani, Iman
    Atyabi, Fatemeh
    Ahvaz, Hana H.
    Rashidi, Abusaeed
    POLYMER INTERNATIONAL, 2013, 62 (08) : 1250 - 1256
  • [26] Telmisartan loaded polycaprolactone/gelatin-based electrospun vascular scaffolds
    Birer, Mehmet
    Acarturk, Fusun
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2022, 71 (11) : 858 - 873
  • [27] Methods of producing three dimensional electrospun scaffolds for bone tissue engineering: A review
    Kareem, Muna M.
    Tanner, K. E.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2022, 236 (04) : 483 - 495
  • [28] Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications
    Abudhahir, Mohamed
    Saleem, Azeena
    Paramita, Pragyan
    Kumar, Sukumar Dinesh
    Tze-Wen, Chung
    Selvamurugan, Nagarajan
    Moorthi, Ambigapathi
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2021, 109 (05) : 654 - 664
  • [29] Influence of aorta extracellular matrix in electrospun polycaprolactone scaffolds
    Reid, James A.
    Callanan, Anthony
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (44)
  • [30] Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review
    Siddiqui, Nadeem
    Kishori, Braja
    Rao, Saranya
    Anjum, Mohammad
    Hemanth, Venkata
    Das, Swati
    Jabbari, Esmaiel
    MOLECULAR BIOTECHNOLOGY, 2021, 63 (05) : 363 - 388