Symbolic dynamics and renormalization of non-autonomous k periodic dynamical systems

被引:6
作者
Franco, Nuno [1 ]
Silva, Luis [2 ,3 ]
Simoes, Pedro [1 ]
机构
[1] Univ Evora, Dept Math, P-7000671 Evora, Portugal
[2] CIMA UE, Evora, Portugal
[3] ISEL Lisbon Super Engn Inst, Dept Math, P-1959007 Lisbon, Portugal
关键词
non-autonomous difference equations; skew-product dynamical systems; symbolic dynamics; renormalization; 39A05; 37B55; 37B10; 37E20; EQUATIONS;
D O I
10.1080/10236198.2011.611804
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper was to introduce the symbolic formalism based on kneading theory, which allows us to study the renormalization of non-autonomous periodic dynamical systems.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 8 条
[1]   On the periodic logistic equation [J].
AlSharawi, Zlyad ;
Angelos, James .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (01) :342-352
[2]  
de Melo W., 1993, RESULTS MATH RELATED, V25
[3]  
DERRIDA B, 1978, ANN I H POINCARE A, V29, P305
[4]   Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures [J].
Elaydi, S ;
Rober, JS .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (4-5) :337-346
[5]   Global stability of periodic orbits of non-autonomous difference equations and population biology [J].
Elaydi, S ;
Sacker, RJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 208 (01) :258-273
[6]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[7]  
Sacker, 2005, P 2 ANN CEL MATH UN
[8]   A unified renormalization scheme for two-piecewise monotonous maps of the interval [J].
Silva, L ;
Ramos, JS .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07) :1711-1719