Region-of-Interest Detection via Superpixel-to-Pixel Saliency Analysis for Remote Sensing Image

被引:44
作者
Ma, Long [1 ]
Du, Bin [1 ]
Chen, He [1 ]
Soomro, Nouman Q. [2 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Embedded Real Time Informat Proc, Beijing 100081, Peoples R China
[2] Mehran Univ Engn & Technol, Dept Software Engn, SZAB Campus, Khairpur 66020, Pakistan
关键词
Background contrast; region-of-interest (ROI) detection; structure tensor; superpixel segmentation;
D O I
10.1109/LGRS.2016.2602885
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Traditional region-of-interest (ROI) detection methods for remote sensing images are generally formulated at pixel level and are less efficient when applied on large high-resolution images. This letter presents an accurate and efficient approach via superpixel-to-pixel saliency analysis for ROI detection. At first, the image is downsampled and segmented into superpixels by simple linear iterative clustering. Next, structure tensor and background contrast are used to yield superpixel feature maps for texture and color. After fusing the feature maps, the overall superpixel saliency map is obtained and then used to achieve the final pixel-level saliency map by superpixel-to-pixel mapping. Through experimentations, we validate the effectiveness and computational efficiency of the proposed model in comparison with state-of-the-art techniques.
引用
收藏
页码:1752 / 1756
页数:5
相关论文
共 15 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   SALIENCY DETECTION USING MAXIMUM SYMMETRIC SURROUND [J].
Achanta, Radhakrishna ;
Suesstrunk, Sabine .
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, :2653-2656
[3]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[4]  
[Anonymous], BOUND VALUE PROBL
[5]  
Fattal R, 2007, ACM T GRAPHIC, V26, DOI [10.1145/1276377.1276496, 10.1145/1239451.1239546]
[6]  
Harel J., 2007, ADV NEURAL INFORM PR, P545, DOI DOI 10.7551/MITPRESS/7503.003.0073
[7]   A model of saliency-based visual attention for rapid scene analysis [J].
Itti, L ;
Koch, C ;
Niebur, E .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (11) :1254-1259
[8]   Saliency and Gist Features for Target Detection in Satellite Images [J].
Li, Zhicheng ;
Itti, Laurent .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (07) :2017-2029
[9]   Superpixel-Based Spatiotemporal Saliency Detection [J].
Liu, Zhi ;
Zhang, Xiang ;
Luo, Shuhua ;
Le Meur, Olivier .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (09) :1522-1540
[10]   A waterborne salient ship detection method on SAR imagery [J].
Ma Long ;
Chen Liang ;
Zhang XueJing ;
Chen He ;
Soomro, Nouman Qadeer .
SCIENCE CHINA-INFORMATION SCIENCES, 2015, 58 (08) :1-3