An in-memory computing multiply-and-accumulate circuit based on ternary STT-MRAMs for convolutional neural networks

被引:0
作者
Zhao, Guihua [1 ]
Jin, Xing [1 ]
Ye, Huafeng [2 ]
Peng, Yating [2 ]
Liu, Wei [1 ]
Yin, Ningyuan [2 ]
Chen, Weichong [2 ]
Chen, Jianjun [1 ]
Li, Ximing [1 ]
Yu, Zhiyi [2 ,3 ]
机构
[1] Sun Yat sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Peoples R China
[2] Sun Yat sen Univ, Sch Microelect Sci & Technol, Zhuhai 519082, Peoples R China
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Optoelect Informat Proc Chi, Guangzhou, Peoples R China
来源
IEICE ELECTRONICS EXPRESS | 2022年 / 19卷 / 20期
基金
国家重点研发计划;
关键词
In-memory computing; STT-MRAM; multiply-and-accumulate; ternary neural networks; binary neural networks; ARCHITECTURE; ARRAY; MTJ;
D O I
10.1587/elex.19.20220399
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In-memory computing (IMC) quantized neural network (QNN) accelerators are extensively used to improve energy-efficiency. However, ternary neural network (TNN) accelerators with bitwise operations in nonvolatile memory are lacked. In addition, specific accelerators are generally used for a single algorithm with limited applications. In this report, a multiply-and-accumulate (MAC) circuit based on ternary spin-torque transfer magnetic random access memory (STT-MRAM) is proposed, which allows writing, reading, and multiplying operations in memory and accumulations near memory. The design is a promising scheme to implement hybrid binary and ternary neural network accelerators.
引用
收藏
页数:6
相关论文
共 31 条
  • [1] Alemdar H, 2017, IEEE IJCNN, P2547, DOI 10.1109/IJCNN.2017.7966166
  • [2] YodaNN: An Architecture for Ultralow Power Binary-Weight CNN Acceleration
    Andri, Renzo
    Cavigelli, Lukas
    Rossi, Davide
    Benini, Luca
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (01) : 48 - 60
  • [3] Angizi S, 2018, ASIA S PACIF DES AUT, P111, DOI 10.1109/ASPDAC.2018.8297291
  • [4] [Anonymous], IEEE T PATTERN ANAL
  • [5] Dai J, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1796, DOI 10.1109/ICIT.2016.7475036
  • [6] Spin-Transfer Torque Devices for Logic and Memory: Prospects and Perspectives
    Fong, Xuanyao
    Kim, Yusung
    Yogendra, Karthik
    Fan, Deliang
    Sengupta, Abhronil
    Raghunathan, Anand
    Roy, Kaushik
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2016, 35 (01) : 1 - 22
  • [7] Rich feature hierarchies for accurate object detection and semantic segmentation
    Girshick, Ross
    Donahue, Jeff
    Darrell, Trevor
    Malik, Jitendra
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 580 - 587
  • [8] Fast R-CNN
    Girshick, Ross
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1440 - 1448
  • [9] Hwang K, 2014, IEEE WRK SIG PRO SYS, P174
  • [10] Computing in Memory With Spin-Transfer Torque Magnetic RAM
    Jain, Shubham
    Ranjan, Ashish
    Roy, Kaushik
    Raghunathan, Anand
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2018, 26 (03) : 470 - 483