Random walks, Kleinian groups, and bifurcation currents

被引:6
|
作者
Deroin, Bertrand [2 ]
Dujardin, Romain [1 ]
机构
[1] Ecole Polytech, CMLS, F-91128 Palaiseau, France
[2] Univ Paris 11, CNRS, Dept Math Orsay, F-91405 Orsay, France
关键词
QUASI-CONFORMAL HOMEOMORPHISMS; RANDOM MATRICES; RATIONAL MAPS; DYNAMICS; PRODUCTS; SUBGROUPS;
D O I
10.1007/s00222-012-0376-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (rho (lambda) ) (lambda aI >) be a holomorphic family of representations of a finitely generated group G into PSL(2,a",), parameterized by a complex manifold I >. We define a notion of bifurcation current in this context, that is, a positive closed current on I > describing the bifurcations of this family of representations in a quantitative sense. It is the analogue of the bifurcation current introduced by DeMarco for holomorphic families of rational mappings on a"(TM)(1). Our definition relies on the theory of random products of matrices, so it depends on the choice of a probability measure mu on G. We show that under natural assumptions on mu, the support of the bifurcation current coincides with the bifurcation locus of the family. We also prove that the bifurcation current describes the asymptotic distribution of several codimension 1 phenomena in parameter space, like accidental parabolics or new relations, or accidental collisions between fixed points.
引用
收藏
页码:57 / 118
页数:62
相关论文
共 50 条
  • [21] Subset currents on free groups
    Kapovich, Ilya
    Nagnibeda, Tatiana
    GEOMETRIAE DEDICATA, 2013, 166 (01) : 307 - 348
  • [22] Survival of Branching Random Walks in Random Environment
    Nina Gantert
    Sebastian Müller
    Serguei Popov
    Marina Vachkovskaia
    Journal of Theoretical Probability, 2010, 23 : 1002 - 1014
  • [23] Higher Bifurcation Currents, Neutral Cycles, and the Mandelbrot Set
    Gauthier, Thomas
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (04) : 917 - 937
  • [24] Survival of Branching Random Walks in Random Environment
    Gantert, Nina
    Mueller, Sebastian
    Popov, Serguei
    Vachkovskaia, Marina
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) : 1002 - 1014
  • [25] Semisimple random walks on the torus
    He, Weikun
    DE Saxce, Nicolas
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025,
  • [26] Expansion and random walks in SLd(Z/pnZ): II
    Bourgain, Jean
    Gamburd, Alex
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (05) : 1057 - 1103
  • [27] Random walks on spatial networks
    Dou Fei-Ling
    Hu Yan-Qing
    Li Yong
    Fan Ying
    Di Zeng-Ru
    ACTA PHYSICA SINICA, 2012, 61 (17)
  • [28] LINEAR RANDOM WALKS ON THE TORUS
    He, Weikun
    De Saxce, Nicolas
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (05) : 1061 - 1133
  • [29] THE CURIOUS MODULI SPACES OF UNMARKED KLEINIAN SURFACE GROUPS
    Canary, Richard D.
    Storm, Peter A.
    AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (01) : 71 - 85
  • [30] Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions
    Guivarc'h, Y.
    Le Page, E.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 503 - 574