A posteriori error estimates for the effective Hamiltonian of dislocation dynamics

被引:6
作者
Cacace, S. [2 ]
Chambolle, A. [3 ]
Monneau, R. [1 ]
机构
[1] CERMICS, Ecole Natl Ponts & Chaussees, F-77455 Champs Sur Marne 2, Marne La Vallee, France
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[3] Ecole Polytech, CNRS, CMAP, F-91128 Palaiseau, France
关键词
NONLOCAL EIKONAL EQUATION; JACOBI EQUATIONS; CONVERGENT SCHEME; NUMERICAL-METHODS; HOMOGENIZATION; APPROXIMATION; UNIQUENESS; EXISTENCE; FRONTS;
D O I
10.1007/s00211-011-0430-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an implicit and discontinuous scheme for a non-local Hamilton-Jacobi equation modelling dislocation dynamics. For the evolution problem, we prove an a posteriori estimate of Crandall-Lions type for the error between continuous and discrete solutions. We deduce an a posteriori error estimate for the effective Hamiltonian associated to a stationary cell problem. In dimension one and under suitable assumptions, we also give improved a posteriori estimates. Numerical simulations are provided.
引用
收藏
页码:281 / 335
页数:55
相关论文
共 25 条
[1]   Homogenization of Hamilton-Jacobi equations: Numerical methods [J].
Achdou, Yves ;
Camilli, Fabio ;
Dolcetta, Italo Capuzzo .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (07) :1115-1143
[2]  
Albert S, 2002, MATH COMPUT, V71, P49, DOI 10.1090/S0025-5718-01-01346-1
[3]  
Albert S., 2002, APOSTERIORI ERROR 3, P3
[4]   Convergence of a first order scheme for a non-local eikonal equation [J].
Alvarez, O. ;
Carlini, E. ;
Monneau, R. ;
Rouy, E. .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (09) :1136-1146
[5]   A convergent scheme for a non local Hamilton Jacobi equation modelling dislocation dynamics [J].
Alvarez, O. ;
Carlini, E. ;
Monneau, R. ;
Rouy, E. .
NUMERISCHE MATHEMATIK, 2006, 104 (04) :413-444
[6]   Dislocation dynamics: Short-time existence and uniqueness of the solution [J].
Alvarez, Olivier ;
Hoch, Philippe ;
Le Bouar, Yann ;
Monneau, Regis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 181 (03) :449-504
[7]   Global existence results and uniqueness for dislocation equations [J].
Barles, Guy ;
Cardaliaguet, Pierre ;
Ley, Olivier ;
Monneau, Regis .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) :44-69
[8]   Error estimates for the approximation of the effective Hamiltonian [J].
Camilli, Fabio ;
Dolcetta, Italo Capuzzo ;
Gomes, Diogo A. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2008, 57 (01) :30-57
[9]  
Carlini E., GEN FAST MA IN PRESS
[10]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8