Current advances in three-dimensional tissue/organ printing

被引:39
作者
Park, Jeong Hun [1 ]
Jang, Jinah [1 ]
Lee, Jung-Seob [1 ]
Cho, Dong-Woo [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, 77 Cheongam Ro, Pohang 37673, South Korea
关键词
3D tissue/organ printing; Bio-ink; 3D tissue/organ analogue; In vitro tissue model; Tissue engineering and regenerative medicine; SOLID FREEFORM FABRICATION; HYALURONIC-ACID; ENGINEERED CONSTRUCTS; PORE ARCHITECTURE; STEM-CELLS; SCAFFOLD; HYDROGELS; STEREOLITHOGRAPHY; DIFFERENTIATION; BIOMATERIALS;
D O I
10.1007/s13770-016-8111-8
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Three-dimensional (3D) tissue/organ printing is a major aspect of recent innovation in the field of tissue engineering and regenerative medicine. 3D tissue/organ printing aims to create 3D living tissue/organ analogues, and have evolved along with advances in 3D printing techniques. A diverse range of computer-aided 3D printing techniques have been applied to dispose living cells together with biomaterials and supporting biochemical factors within pre-designed 3D tissue/organ analogues. Recent developments in printable biomaterials, such as decellularized extracellular matrix bio-inks have enabled improvements in the functionality of the resulting 3D tissue/organ analogues. Here, we provide an overview of the 3D printing techniques and biomaterials that have been used, including the development of 3D tissue/organ analogues. In addition, in vitro models are described, and future perspectives in 3D tissue/organ printing are identified.
引用
收藏
页码:612 / 621
页数:10
相关论文
共 92 条
[1]   Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells [J].
Arcaute, Karina ;
Mann, Brenda K. ;
Wicker, Ryan B. .
ANNALS OF BIOMEDICAL ENGINEERING, 2006, 34 (09) :1429-1441
[2]   The Use of Whole Organ Decellularization for the Generation of a Vascularized Liver Organoid [J].
Baptista, Pedro M. ;
Siddiqui, Mohummad M. ;
Lozier, Genevieve ;
Rodriguez, Sergio R. ;
Atala, Anthony ;
Soker, Shay .
HEPATOLOGY, 2011, 53 (02) :604-617
[3]   Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth [J].
Barry, Robert A., III ;
Shepherd, Robert F. ;
Hanson, Jennifer N. ;
Nuzzo, Ralph G. ;
Wiltzius, Pierre ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2009, 21 (23) :2407-+
[4]   Engineered In Vitro Disease Models [J].
Benam, Kambez H. ;
Dauth, Stephanie ;
Hassell, Bryan ;
Herland, Anna ;
Jain, Abhishek ;
Jang, Kyung-Jin ;
Karalis, Katia ;
Kim, Hyun Jung ;
MacQueen, Luke ;
Mahmoodian, Roza ;
Musah, Samira ;
Torisawa, Yu-suke ;
van der Meer, Andries D. ;
Villenave, Remi ;
Yadid, Moran ;
Parker, Kevin K. ;
Ingber, Donald E. .
ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 10, 2015, 10 :195-262
[5]   The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability [J].
Billiet, Thomas ;
Gevaert, Elien ;
De Schryver, Thomas ;
Cornelissen, Maria ;
Dubruel, Peter .
BIOMATERIALS, 2014, 35 (01) :49-62
[6]   A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering [J].
Billiet, Thomas ;
Vandenhaute, Mieke ;
Schelfhout, Jorg ;
Van Vlierberghe, Sandra ;
Dubruel, Peter .
BIOMATERIALS, 2012, 33 (26) :6020-6041
[7]  
Boland Thomas, 2006, Biotechnology Journal, V1, P910, DOI 10.1002/biot.200600081
[8]   Development of Renal Extracellular Matrix (ECM) Scaffold for Kidney Regeneration [J].
Chae, Seon Yeong ;
Chun, So Young ;
Park, Min ;
Jang, Yu-Jin ;
Kim, Jin Rae ;
Oh, Se Heang ;
Lee, Jin Ho ;
Song, Phil Hyun ;
Kwon, Tae Gyun ;
Kim, Tae-Hwan .
TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 11 :1-7
[9]   Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies [J].
Chang, Carlos C. ;
Boland, Eugene D. ;
Williams, Stuart K. ;
Hoying, James B. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2011, 98B (01) :160-170
[10]   Direct cell writing of 3D microorgan for in vitro pharmacokinetic model [J].
Chang, Robert ;
Nam, Yae ;
Sun, Wei .
TISSUE ENGINEERING PART C-METHODS, 2008, 14 (02) :157-166