THE LOCAL GENERALIZED DERIVATIVE AND MITTAG-LEFFLER FUNCTION

被引:0
|
作者
Napoles Valdes, Juan E. [1 ,2 ]
Guzman, Paulo M. [3 ,4 ]
Lugo, Luciano M. [1 ]
Kashuri, Artion [5 ]
机构
[1] Unne, FaCENA, Ave Libertad 5450, RA-3400 Corrientes, Argentina
[2] UTN FRRE, French 414, RA-3500 Resistencia, Chaco, Argentina
[3] Unne, FaCENA, Fac Ciencias Agr, Ave Libertad 5450, RA-3400 Corrientes, Argentina
[4] Fac Ingn, Ave Heras 727, RA-3500 Resistencia, Argentina
[5] Univ Ismail Qemali, Fac Tech Sci, Dept Math, Vlora, Albania
来源
SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI | 2020年 / 38卷 / 02期
关键词
Fractional calculus; DEFINITION; EQUATIONS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present a general definition of a generalized derivative of local type using the well known Mittag-Leffler function. Some methodological remarks on the local fractional derivatives are also presented.
引用
收藏
页码:1007 / 1017
页数:11
相关论文
共 50 条
  • [1] Variational Problems Involving a Generalized Fractional Derivative with Dependence on the Mittag-Leffler Function
    Almeida, Ricardo
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [2] Note on generalized Mittag-Leffler function
    Desai, Rachana
    Salehbhai, I. A.
    Shukla, A. K.
    SPRINGERPLUS, 2016, 5
  • [3] A method for solving the generalized Camassa-Choi problem with the Mittag-Leffler function and temporal local derivative
    Hashemi, Mir Sajjad
    Akguel, Ali
    Hassan, Ahmed
    Bayram, Mustafa
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 81 : 437 - 443
  • [4] NUMERICAL ALGORITHM FOR CALCULATING THE GENERALIZED MITTAG-LEFFLER FUNCTION
    Seybold, Hansjoerg
    Hilfer, Rudolf
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 69 - 88
  • [5] Generalized convolution properties based on the modified Mittag-Leffler function
    Srivastava, H. M.
    Kilicman, Adem
    Abdulnaby, Zainab E.
    Ibrahim, Rabha W.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4284 - 4294
  • [6] A generalized Mittag-Leffler function to describe nonexponential chemical effects
    Lemes, Nelson H. T.
    dos Santos, Jose Paulo C.
    Braga, Joao P.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (17-18) : 7971 - 7976
  • [7] On the numerical computation of the Mittag-Leffler function
    Valerio, Duarte
    Machado, Jose Tenreiro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3419 - 3424
  • [8] A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1377 - 1395
  • [9] OPTIMALITY CONDITIONS INVOLVING THE MITTAG-LEFFLER TEMPERED FRACTIONAL DERIVATIVE
    Almeida, Ricardo
    Luisa Morgado, M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (03): : 519 - 534
  • [10] A further extension of Mittag-Leffler function
    Maja Andrić
    Ghulam Farid
    Josip Pečarić
    Fractional Calculus and Applied Analysis, 2018, 21 : 1377 - 1395