BOOTSTRAPPING WEIGHTED FOURIER INEQUALITIES

被引:2
作者
Sinnamon, G. [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2009年 / 3卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
Fourier transform; convolution; weight; positive operator;
D O I
10.7153/jmi-03-34
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theory of positive integral operators is applied to convolution operators, giving a method of producing new weighted Fourier inequalities from known ones. The new inequalities produced depend on six parameters; two real indices, two complex-valued measures, and two positive functions. The method may be iterated using the last inequality generated as input to the next stage.
引用
收藏
页码:341 / 346
页数:6
相关论文
共 50 条
  • [21] Some inequalities involving Fourier transforms
    El Hamma, M.
    Daher, R.
    Mahfoud, A.
    Lahmadi, H.
    AFRIKA MATEMATIKA, 2023, 34 (04)
  • [22] Sharp weighted fractional Hardy inequalities
    Dyda, Bartlomiej
    Kijaczko, Michal
    STUDIA MATHEMATICA, 2024, 274 (02) : 153 - 171
  • [23] Convolution Inequalities in lp Weighted Spaces
    Nguyen Du Vi Nhan
    Dinh Thanh Duc
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (02): : 355 - 367
  • [24] Weighted convolution inequalities for radial functions
    De Napoli, Pablo L.
    Drelichman, Irene
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (01) : 167 - 181
  • [25] Weighted Inequalities for the Dyadic Square Function
    Osckowski, Adam
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 85 (03) : 359 - 380
  • [26] The minimal operator and weighted inequalities for martingales
    Zuo, HL
    Liu, PD
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (01) : 31 - 40
  • [27] CONVOLUTION INEQUALITIES IN WEIGHTED LORENTZ SPACES
    Krepela, Martin
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (04): : 1201 - 1223
  • [28] WEIGHTED MAXIMAL INEQUALITIES FOR MARTINGALE TRANSFORMS
    Brzozowski, Michal
    Osekowski, Adam
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2021, 41 (01): : 89 - 114
  • [29] WEIGHTED NORM INEQUALITIES FOR DERIVATIVES AND THEIR APPLICATIONS
    Nhan Nguyen Du Vi
    Duc Dinh Thanh
    Tuan Vu Kim
    KODAI MATHEMATICAL JOURNAL, 2013, 36 (02) : 228 - 245
  • [30] Weighted Norm Inequalities for Integral Transforms
    Gorbachev, Dmitry
    Liflyand, Elijah
    Tikhonov, Sergey
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (05) : 1949 - 2003