Entropic trapsin the kinetics of phase separation in multicomponent membranes stabilize nanodomains

被引:98
|
作者
Frolov, V. A. J.
Chizmadzhev, Y. A.
Cohen, F. S.
Zimmerberg, J. [1 ]
机构
[1] Russian Acad Sci, Frumkin Inst Electrochem, Moscow, Russia
[2] Natl Inst Child Hlth & Human Dev, Lab Cellular & Mol Biophys, NIH, Bethesda, MD USA
[3] Rush Univ, Ctr Med, Dept Mol Biophys & Physiol, Chicago, IL USA
关键词
D O I
10.1529/biophysj.105.068502
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We quantitatively describe the creation and evolution of phase-separated domains in a multicomponent lipid bilayer membrane. The early stages, termed the nucleation stage and the independent growth stage, are extremely rapid ( characteristic times are submillisecond and millisecond, respectively) and the system consists of nanodomains of average radius; similar to 5-50 nm. Next, mobility of domains becomes consequential; domain merger and fission become the dominant mechanisms of matter exchange, and line tension gamma is the main determinant of the domain size distribution at any point in time. For sufficiently small gamma, the decrease in the entropy term that results from domain merger is larger than the decrease in boundary energy, and only nanodomains are present. For large gamma, the decrease in boundary energy dominates the unfavorable entropy of merger, and merger leads to rapid enlargement of nanodomains to radii of micrometer scale. At intermediate line tensions and within finite times, nanodomains can remain dispersed and coexist with a new global phase. The theoretical critical value of line tension needed to rapidly form large rafts is in accord with the experimental estimate from the curvatures of budding domains in giant unilamellar vesicles.
引用
收藏
页码:189 / 205
页数:17
相关论文
共 50 条
  • [1] Unbinding transitions and phase separation of multicomponent membranes
    Weikl, TR
    Netz, RR
    Lipowsky, R
    PHYSICAL REVIEW E, 2000, 62 (01): : R45 - R48
  • [2] Phase-separation kinetics of a multicomponent alloy
    Mazumder, S
    Sen, D
    Batra, IS
    Tewari, R
    Dey, GK
    Banerjee, S
    Sequeira, A
    Amenitsch, H
    Bernstorff, S
    PHYSICAL REVIEW B, 1999, 60 (02) : 822 - 830
  • [3] The kinetics of phase separation in asymmetric membranes
    Wallace, EJ
    Hooper, NM
    Olmsted, PD
    BIOPHYSICAL JOURNAL, 2005, 88 (06) : 4072 - 4083
  • [4] Gangliosides Destabilize Lipid Phase Separation in Multicomponent Membranes
    Liu, Yang
    Barnoud, Jonathan
    Marrink, Siewert J.
    BIOPHYSICAL JOURNAL, 2019, 117 (07) : 1215 - 1223
  • [5] Charged Lipids Modulate the Phase Separation in Multicomponent Membranes
    Wang, Yifei
    Majd, Sheereen
    LANGMUIR, 2023, 39 (32) : 11371 - 11378
  • [6] Entropic forces stabilize diverse emergent structures in colloidal membranes
    Kang, Louis
    Gibaud, Thomas
    Dogic, Zvonimir
    Lubensky, T. C.
    SOFT MATTER, 2016, 12 (02) : 386 - 401
  • [7] Cytoskeletal Pinning Controls Phase Separation in Multicomponent Lipid Membranes
    Arumugam, Senthil
    Petrov, Eugene P.
    Schwille, Petra
    BIOPHYSICAL JOURNAL, 2015, 108 (05) : 1104 - 1113
  • [8] Digital holographic microscopy of phase separation in multicomponent lipid membranes
    Rad, Vahideh Farzam
    Moradi, Ali-Reza
    Darudi, Ahmad
    Tayebi, Lobat
    JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (12)
  • [9] Two types of fractal dimensions for phase separation in multicomponent polymer membranes
    Miyata, T
    Takagi, T
    Higuchi, JI
    Uragami, T
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1999, 37 (13) : 1545 - 1550
  • [10] Entropic phase separation of organic nanoparticles
    Krishnan, R. S.
    Mackay, Michael E.
    Hawker, Craig J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U4139 - U4139