POINTWISE SECOND-ORDER NECESSARY OPTIMALITY CONDITIONS FOR THE MAYER PROBLEM WITH CONTROL CONSTRAINTS

被引:26
作者
Frankowska, Helene [1 ]
Tonon, Daniela [1 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, F-75252 Paris, France
基金
欧盟第七框架计划;
关键词
optimal control; second-order necessary conditions; endpoint constraint; HIGH-ORDER;
D O I
10.1137/130906799
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is devoted to second-order necessary optimality conditions for the Mayer optimal control problem when the control set U is a closed subset of Rm. We show that, in the absence of endpoint constraints, if an optimal control (U) over bar( u) is singular and integrable, then for almost every t such that (U) over bar( t) is in the interior of U, both the Goh and a generalized Legendre-Clebsch condition hold true. Moreover, when the control set is a convex polytope, similar conditions are verified on the tangent subspace to U at (U) over bar( t) for almost all t's such that (U) over bar( t) lies on the boundary. U of U. The same conditions are valid also for U having a smooth boundary at every t where (U) over bar (T) is singular and locally Lipschitz and (U) over bar (t).. U. In the presence of a smooth endpoint constraint, these second-order necessary optimality conditions are satisfied whenever the Mayer problem is calm and the maximum principle is abnormal. If it is normal, then analogous results hold true on some smaller subspaces.
引用
收藏
页码:3814 / 3843
页数:30
相关论文
共 23 条
[1]  
Agrachev A. A., 2004, Control Theory and Optimization, V87
[2]  
Agrachev A. A., 1976, MAT SBORNIK, V100, P610
[3]   Abnormal sub-Riemannian geodesics: Morse index and rigidity [J].
Agrachev, AA ;
Sarychev, AV .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (06) :635-690
[4]  
AGRACHEV AA, 1977, MAT SBORNIK, V102, P551
[5]  
[Anonymous], 1990, OPTIMIZATION NONSMOO
[6]  
Aronna M. S., 2012, PREPRINT
[7]   QUADRATIC ORDER CONDITIONS FOR BANG-SINGULAR EXTREMALS [J].
Aronna, M. Soledad ;
Bonnans, J. Frederic ;
Dmitruk, Andrei V. ;
Lotito, Pablo A. .
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (03) :511-546
[8]  
Berkovitz L.D., 1961, Journal of Mathematical Analysis and Applications, V3, P145
[9]  
BONNARD B., 2012, MATH APPL, V40
[10]   Singular trajectories of control-affine systems [J].
Chitour, Yacine ;
Jean, Frederic ;
Trelat, Emmanuel .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (02) :1078-1095