Transcriptional profiles of type 2 diabetes in human skeletal muscle reveal insulin resistance, metabolic defects, apoptosis, and molecular signatures of immune activation in response to infections

被引:37
作者
Wu, Chun [1 ]
Xu, Gang [2 ]
Tsai, Shang-Yi A. [3 ]
Freed, William J. [3 ,4 ]
Lee, Chun-Ting [5 ]
机构
[1] Univ Miami, Miller Sch Med, Dept Mol & Cellular Pharmacol, 1951 NW 7th Ave,Suite 240, Miami, FL 33136 USA
[2] Univ Miami, Miller Sch Med, Div Biostat, Dept Publ Hlth Sci, Miami, FL 33136 USA
[3] NIDA, Intramural Res Program, NIH, Dept Hlth & Human Serv, Baltimore, MD 21244 USA
[4] Lebanon Valley Coll, Dept Biol, Annville, PA 17003 USA
[5] Univ Miami, Miller Sch Med, Dept Neurol, Miami, FL 33136 USA
关键词
Transcriptome; Type; 2; diabetes; Insulin resistance; Metabolic defects; Immune activation; GENES; PACKAGE; RISK;
D O I
10.1016/j.bbrc.2016.11.055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Skeletal muscle insulin resistance is considered to be the primary defect involved in type 2 diabetes mellitus (T2DM). Despite transcriptome studies in limited T2DM human subjects suggesting an association of T2DM with impaired oxidative phosphorylation in muscle, its molecular pathogenesis remains largely unknown. To identify dysregulated genes and gene networks that are associated with T2DM in human skeletal muscle, we examined expression patterns of 56,318 transcribed genes on 92 T2DM cases and 184 gender-, age- and race-matched non-diabetic controls from the Genotype-Tissue Expression (GTEx) database. RNA-Sequencing data suggest that diabetic skeletal muscle is characterized by decreased expression of genes that are related to insulin resistance (1RS2, MTOR, SLC2A4, and PPARA), carbohydrate, energy, and amino acid metabolism pathways (NDUFSI, NDUFA10, NDUFB4, NDUFB5, NDUFA5, NDUFB10, SDHB, SDHC, ATP5H, ATP5A, and ATP5J). Up-regulated genes in T2DM are mainly enriched in apoptosis pathways (TP53, GADD45A, TNFRSF10B, TP53A1P1, and PMAIP1), and notably include immune-related pathways suggestive of a response to various infectious diseases (C2, CFB, C4A, C4B, C1S, C1R, C3, HLA-DRA, HLA-DMA, HLA-DOA, and HLA-DPB1). These results confirm the essential regulation of impaired insulin signaling and oxidative phosphorylation in the muscle of T2DM patients, and provide novel molecular insights into the pathophysiological mechanisms of T2DM. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 24 条
[11]   Pathview: an R/Bioconductor package for pathway-based data integration and visualization [J].
Luo, Weijun ;
Brouwer, Cory .
BIOINFORMATICS, 2013, 29 (14) :1830-1831
[12]   The human transcriptome across tissues and individuals [J].
Mele, Marta ;
Ferreira, Pedro G. ;
Reverter, Ferran ;
DeLuca, David S. ;
Monlong, Jean ;
Sammeth, Michael ;
Young, Taylor R. ;
Goldmann, Jakob M. ;
Pervouchine, Dmitri D. ;
Sullivan, Timothy J. ;
Johnson, Rory ;
Segre, Ayellet V. ;
Djebali, Sarah ;
Niarchou, Anastasia ;
Wright, Fred A. ;
Lappalainen, Tuuli ;
Calvo, Miquel ;
Getz, Gad ;
Dermitzakis, Emmanouil T. ;
Ardlie, Kristin G. ;
Guigo, Roderic .
SCIENCE, 2015, 348 (6235) :660-665
[13]   PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes [J].
Mootha, VK ;
Lindgren, CM ;
Eriksson, KF ;
Subramanian, A ;
Sihag, S ;
Lehar, J ;
Puigserver, P ;
Carlsson, E ;
Ridderstråle, M ;
Laurila, E ;
Houstis, N ;
Daly, MJ ;
Patterson, N ;
Mesirov, JP ;
Golub, TR ;
Tamayo, P ;
Spiegelman, B ;
Lander, ES ;
Hirschhorn, JN ;
Altshuler, D ;
Groop, LC .
NATURE GENETICS, 2003, 34 (03) :267-273
[14]   Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes:: Potential role of PGC1 and NRF1 [J].
Patti, ME ;
Butte, AJ ;
Crunkhorn, S ;
Cusi, K ;
Berria, R ;
Kashyap, S ;
Miyazaki, Y ;
Kohane, I ;
Costello, M ;
Saccone, R ;
Landaker, EJ ;
Goldfine, AB ;
Mun, E ;
DeFronzo, R ;
Finlayson, J ;
Kahn, CR ;
Mandarino, LJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (14) :8466-8471
[15]   Type 2 diabetes mellitus and skeletal muscle metabolic function [J].
Phielix, Esther ;
Mensink, Marco .
PHYSIOLOGY & BEHAVIOR, 2008, 94 (02) :252-258
[16]   Genetics of type 1 diabetes mellitus [J].
Pociot, F ;
McDermott, MF .
GENES AND IMMUNITY, 2002, 3 (05) :235-249
[17]   limma powers differential expression analyses for RNA-sequencing and microarray studies [J].
Ritchie, Matthew E. ;
Phipson, Belinda ;
Wu, Di ;
Hu, Yifang ;
Law, Charity W. ;
Shi, Wei ;
Smyth, Gordon K. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (07) :e47
[18]   OPTIMAL MATCHING FOR OBSERVATIONAL STUDIES [J].
ROSENBAUM, PR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :1024-1032
[19]   The genetic regulatory signature of type 2 diabetes in human skeletal muscle [J].
Scott, Laura J. ;
Erdos, Michael R. ;
Huyghe, Jeroen R. ;
Welch, Ryan P. ;
Beck, Andrew T. ;
Wolford, Brooke N. ;
Chines, Peter S. ;
Didion, John P. ;
Narisu, Narisu ;
Stringham, Heather M. ;
Taylor, D. Leland ;
Jackson, Anne U. ;
Vadlamudi, Swarooparani ;
Bonnycastle, Lori L. ;
Kinnunen, Leena ;
Saramies, Jouko ;
Sundvall, Jouko ;
Albanus, Ricardo D'Oliveira ;
Kiseleva, Anna ;
Hensley, John ;
Crawford, Gregory E. ;
Jiang, Hui ;
Wen, Xiaoquan ;
Watanabe, Richard M. ;
Lakka, Timo A. ;
Mohlke, Karen L. ;
Laakso, Markku ;
Tuomilehto, Jaakko ;
Koistinen, Heikki A. ;
Boehnke, Michael ;
Collins, Francis S. ;
Parker, Stephen C. J. .
NATURE COMMUNICATIONS, 2016, 7
[20]   Quantifying the risk of infectious diseases for people with diabetes [J].
Shah, BR ;
Hux, JE .
DIABETES CARE, 2003, 26 (02) :510-513