Evolutionary aspects of elemental hyperaccumulation

被引:154
作者
Cappa, Jennifer J. [1 ]
Pilon-Smits, Elizabeth A. H. [1 ]
机构
[1] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
THLASPI-CAERULESCENS BRASSICACEAE; SELENIUM-ACCUMULATING PLANTS; SPECIES SEDUM-ALFREDII; PRAIRIE DOG HERBIVORY; STANLEYA-PINNATA; METAL HYPERACCUMULATION; ARABIDOPSIS-HALLERI; NICKEL HYPERACCUMULATION; ZINC HYPERACCUMULATION; ALYSSUM-MURALE;
D O I
10.1007/s00425-013-1983-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Hyperaccumulation is the uptake of one or more metal/metalloids to concentrations greater than 50-100x those of the surrounding vegetation or 100-10,000 mg/kg dry weight depending on the element. Hyperaccumulation has been documented in at least 515 taxa of angiosperms. By mapping the occurrence of hyperaccumulators onto the angiosperm phylogeny, we show hyperaccumulation has had multiple origins across the angiosperms. Even within a given order, family or genus, there are typically multiple origins of hyperaccumulation, either for the same or different elements. We address which selective pressures may have led to the evolution of hyperaccumulation and whether there is evidence for co-evolution with ecological partners. Considerable evidence supports the elemental-defense hypothesis, which states that hyperaccumulated elements protect the plants from herbivores and pathogens. There is also evidence that hyperaccumulation can result in drought stress protection, allelopathic effects or physiological benefits. In many instances, ecological partners of hyperaccumulators have evolved resistance to the hyperaccumulated element, indicating co-evolution. Studies on the molecular evolution of hyperaccumulation have pinpointed gene duplication as a common cause of increased metal transporter abundance. Hypertolerance to the hyperaccumulated element often relies upon chelating agents, such as organic acids (e.g., malate, citrate) or peptide/protein chelators that can facilitate transport and sequestration. We conclude the review with a summary and suggested future directions for hyperaccumulator research.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 76 条
[51]   Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae) [J].
Pollard, AJ ;
Baker, AJM .
NEW PHYTOLOGIST, 1997, 135 (04) :655-658
[52]   The role of selenium in protecting plants against prairie dog herbivory: implications for the evolution of selenium hyperaccumulation [J].
Quinn, Colin F. ;
Freeman, John L. ;
Galeas, Miriam L. ;
Klamper, Erin M. ;
Pilon-Smits, Elizabeth A. H. .
OECOLOGIA, 2008, 155 (02) :267-275
[53]   Enhanced decomposition of selenium hyperaccumulator litter in a seleniferous habitat-evidence for specialist decomposers? [J].
Quinn, Colin F. ;
Wyant, Karl A. ;
Wangeline, Ami L. ;
Shulman, Jeremy ;
Galeas, Miriam L. ;
Valdez, Jose Rodolfo ;
Self, James R. ;
Paschke, Mark W. ;
Pilon-Smits, Elizabeth A. H. .
PLANT AND SOIL, 2011, 341 (1-2) :51-61
[54]  
Quinn Colin F., 2010, BMC Ecology, V10, P19, DOI 10.1186/1472-6785-10-19
[55]  
Reeves RD, 2000, PHYTOREMEDIATION OF TOXIC METALS, P193
[56]  
REEVES RD, 1984, NEW PHYTOL, V98, P191
[57]   Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens [J].
Richau, Kerstin H. ;
Kozhevnikova, Anna D. ;
Seregin, Ilya V. ;
Vooijs, Riet ;
Koevoets, Paul L. M. ;
Smith, J. Andrew C. ;
Ivanov, Viktor B. ;
Schat, Henk .
NEW PHYTOLOGIST, 2009, 183 (01) :106-116
[58]   Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe [J].
Roosens, N ;
Verbruggen, N ;
Meerts, P ;
Ximénez-Embún, P ;
Smith, JAC .
PLANT CELL AND ENVIRONMENT, 2003, 26 (10) :1657-1672
[59]   A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) F.K. Meyer [J].
Schneider, Thomas ;
Persson, Daniel Pergament ;
Husted, Soren ;
Schellenberg, Maja ;
Gehrig, Peter ;
Lee, Youngsook ;
Martinoia, Enrico ;
Schjoerring, Jan K. ;
Meyer, Stefan .
PLANT JOURNAL, 2013, 73 (01) :131-142
[60]   Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots [J].
Shibagaki, N ;
Rose, A ;
McDermott, JP ;
Fujiwara, T ;
Hayashi, H ;
Yoneyama, T ;
Davies, JP .
PLANT JOURNAL, 2002, 29 (04) :475-486