A short proof of the versatile version of Fleischner's theorem

被引:9
作者
Muettel, Janina [1 ]
Rautenbach, Dieter [1 ]
机构
[1] Univ Ulm, Inst Optimizat & Operat Res, D-89069 Ulm, Germany
关键词
Fleischner's theorem; Square of a graph; Hamiltonian cycle; HAMILTONIAN CYCLES; SQUARE; GRAPH;
D O I
10.1016/j.disc.2012.07.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short proof of the following strong version of Fleischner's theorem: if G is a 2-connected graph and v(1) and v(2) are two distinct vertices of G(1) then G(2) contains a Hamiltonian cycle C such that both edges of C incident with v(1) and one further edge of C incident with v(2) belong to G. (C) 2012 Elsevier By. All rights reserved.
引用
收藏
页码:1929 / 1933
页数:5
相关论文
共 10 条
[1]   Induced S(K1,3) and hamiltonian cycles in the square of a graph [J].
Abderrezzak, ME ;
Flandrin, E ;
Ryjácek, Z .
DISCRETE MATHEMATICS, 1999, 207 (1-3) :263-269
[2]  
[Anonymous], 2018, Graph theory
[3]   On graphs whose square have strong hamiltonian properties [J].
Chia, Gek L. ;
Ong, Siew-Hui ;
Tan, Li Y. .
DISCRETE MATHEMATICS, 2009, 309 (13) :4608-4613
[4]  
Ekstein J, 2011, ELECTRON J COMB, V18
[5]  
Fleischner H., 1974, Journal of Combinatorial Theory, Series B, V16, P29, DOI 10.1016/0095-8956(74)90091-4
[6]   SQUARE OF GRAPHS, HAMILTONICITY AND PANCYCLICITY, HAMILTONIAN CONNECTEDNESS AND PANCONNECTEDNESS ARE EQUIVALENT CONCEPTS [J].
FLEISCHNER, H .
MONATSHEFTE FUR MATHEMATIK, 1976, 82 (02) :125-149
[7]   A short proof of Fleischner's theorem [J].
Georgakopoulos, Agelos .
DISCRETE MATHEMATICS, 2009, 309 (23-24) :6632-6634
[8]   IS SQUARE OF EVERY NONSEPARABLE GRAPH HAMILTONIAN [J].
KRONK, HV .
AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (09) :1045-&
[9]  
RIHA S, 1991, J COMB THEORY B, V52, P117, DOI 10.1016/0095-8956(91)90098-5
[10]  
Thomassen C., SQUARE GRAPH I UNPUB