Residual zonal flows in tokamaks in the presence of energetic ions

被引:13
作者
Cho, Y. W. [1 ]
Hahm, T. S. [1 ]
机构
[1] Seoul Natl Univ, Dept Nucl Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
zonal flows; a particles; ITER plasma; gyrokinetics; bouncekinetics; E X B; GYROKINETIC EQUATIONS; REYNOLDS STRESS; POLOIDAL FLOW; PLASMA; DRIVEN; PARTICLES; ROTATION;
D O I
10.1088/1741-4326/ab0ed6
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the residual zonal flow (Rosenbluth and Hinton 1998 Phys. Rev. Lett. 80 724) in the presence of fusion product alpha-particles in tokamak plasmas using the modern gyrokinetic approach in the electrostatic limit. The residual zonal flow is predicted to be enhanced considerably for ITER plasmas in the radial wave-number regime of k(r)rho(i,eff) similar to 10(-1), where rho(i,eff) is the Larmor radius of a thermal ion of background plasma consisting of Deuterium and Tritium. This is a consequence of the fact that larger Larmor radius (banana orbit width, rho(i,b)) of an energetic alpha-particle leads to an enhancement (a reduction) of the classical (neoclassical) polarizability at that wave-number regime compared to the case without alpha-particles. This enhancement is slightly more pronounced for the slowing-down distribution compared to the Maxwellian if T-e greater than or similar to 20 keV for E-alpha = 3.5 MeV. In addition, we find that the Rosenbluth-Hinton formula for the residual zonal flow level that has been derived for the Maxwellian equilibrium ion distribution remains valid in the long wavelength (k(r)rho(i,b) << 1) and high aspect ratio limit for any well-behaved ion distribution function which is isotropic in velocity space.
引用
收藏
页数:14
相关论文
共 56 条
[1]  
Abramowitz M., 1977, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1999, Nucl. Fusion, DOI DOI 10.1088/0029-5515/39/12/302
[3]   INFLUENCE OF SHEARED POLOIDAL ROTATION ON EDGE TURBULENCE [J].
BIGLARI, H ;
DIAMOND, PH ;
TERRY, PW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01) :1-4
[4]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[5]   Microturbulence study of the isotope effect [J].
Bustos, A. ;
Navarro, A. Banon ;
Goerler, T. ;
Jenko, F. ;
Hidalgo, C. .
PHYSICS OF PLASMAS, 2015, 22 (01)
[6]   Zonal-flow dynamics and size scaling of anomalous transport [J].
Chen, L ;
White, RB ;
Zonca, F .
PHYSICAL REVIEW LETTERS, 2004, 92 (07)
[7]   3D field induced collisionless zonal flow decay in tokamak plasmas [J].
Choi, G. J. ;
Hahm, T. S. .
NUCLEAR FUSION, 2018, 58 (02)
[8]   Nonlinear Stabilization of Tokamak Microturbulence by Fast Ions [J].
Citrin, J. ;
Jenko, F. ;
Mantica, P. ;
Told, D. ;
Bourdelle, C. ;
Garcia, J. ;
Haverkort, J. W. ;
Hogeweij, G. M. D. ;
Johnson, T. ;
Pueschel, M. J. .
PHYSICAL REVIEW LETTERS, 2013, 111 (15)
[9]   Zonal flows in plasma - a review [J].
Diamond, PH ;
Itoh, SI ;
Itoh, K ;
Hahm, TS .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (05) :R35-R161
[10]  
DIAMOND PH, 1998, P 17 IAEA FUS EN C Y