Thin film solar cell of SnS absorber with cubic crystalline structure

被引:93
作者
Garcia-Angelmo, A. R. [1 ]
Romano-Trujillo, R. [1 ]
Campos-Alvarez, J. [1 ]
Gomez-Daza, O. [1 ]
Nair, M. T. S. [1 ]
Nair, P. K. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Energias Renovables, Temixco 62580, Morelos, Mexico
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2015年 / 212卷 / 10期
关键词
chemical bath deposition; cubic SnS; thin film solar cell; tin sulfide; ZINC BLENDE; PHOTOVOLTAICS; PERSPECTIVE; CONVERSION; PRESSURE; PHASE;
D O I
10.1002/pssa.201532405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In a solar cell: stainless steel/SnS/CdS/ZnO/ZnO:Al, we report conversion efficiency of 1.28%, open-circuit voltage (V-oc) of 0.470V, and short-circuit current density (J(sc)) of 6.2mAcm(-2), measured on cells of area 1cm(2) under standard conditions. The thin film of SnS absorber of 550nm in thickness used in this cell was deposited from a chemical bath. Average crystalline diameter of the material is 24nm, and its X-ray diffraction pattern fits a cubic unit cell with cube edge of 1.159nm. The optical band gap of the material is 1.74eV and its electrical conductivity is 10(-6-1)cm(-1). The mobility-lifetime product of the film was determined as 2x10(-7)cm(2)V(-1) from photoconductivity measurement. To build the solar cell, a CdS thin film of 50nm in thickness was deposited from a chemical bath on the SnS thin film prepared on the stainless steel substrate. Subsequently, a ZnO film of 180nm and ZnO:Al film of 450nm in thickness were deposited on this CdS defining a solar cell area of 1cm(2). This solar cell is stable under concentrated sunlight of 2-16 suns, attaining V-oc of 0.6V and J(sc) of 35mAcm(-2) under 16 suns. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2332 / 2340
页数:9
相关论文
共 32 条
[1]   Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells [J].
Abermann, Stephan .
SOLAR ENERGY, 2013, 94 :37-70
[2]  
[Anonymous], 2006, Semiconductor Material and Device Characterization, DOI DOI 10.1002/0471749095
[3]   ABSOLUTE LIMITING EFFICIENCIES FOR PHOTOVOLTAIC ENERGY-CONVERSION [J].
ARAUJO, GL ;
MARTI, A .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1994, 33 (02) :213-240
[4]   Polymorphic tin sulfide thin films of zinc blende and orthorhombic structures by chemical deposition [J].
Avellaneda, David ;
Nair, M. T. S. ;
Nair, P. K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (07) :D517-D525
[5]   Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells [J].
Avellaneda, David ;
Delgado, Guadalupe ;
Nair, M. T. S. ;
Nair, P. K. .
THIN SOLID FILMS, 2007, 515 (15) :5771-5776
[6]   Photovoltaic structures using chemically deposited tin sulfide thin films [J].
Avellaneda, David ;
Nair, M. T. S. ;
Nair, P. K. .
THIN SOLID FILMS, 2009, 517 (07) :2500-2502
[7]   Chemically Deposited SnSe Thin Films: Thermal Stability and Solar Cell Application [J].
Barrios-Salgado, Enue ;
Nair, M. T. S. ;
Nair, P. K. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2014, 3 (08) :Q169-Q175
[8]   Synthesis and Crystallographic Analysis of Shape-Controlled SnS Nanocrystal Photocatalysts: Evidence for a Pseudotetragonal Structural Modification [J].
Biacchi, Adam J. ;
Vaughn, Dimitri D., II ;
Schaak, Raymond E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (31) :11634-11644
[9]   Band alignment in SnS thin-film solar cells: Possible origin of the low conversion efficiency [J].
Burton, Lee A. ;
Walsh, Aron .
APPLIED PHYSICS LETTERS, 2013, 102 (13)
[10]   Phase Stability of the Earth-Abundant Tin Sulfides SnS, SnS2, and Sn2S3 [J].
Burton, Lee A. ;
Walsh, Aron .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (45) :24262-24267