Electronic properties of the 1D Frenkel-Kontorova model

被引:12
作者
Tong, PQ [1 ]
Li, BW
Hu, BB
机构
[1] Nanjing Normal Univ, Dept Phys, Nanjing 210097, Jiangsu, Peoples R China
[2] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[3] Hong Kong Baptist Univ, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[4] Hong Kong Baptist Univ, Ctr Nonlinear Studies, Hong Kong, Hong Kong, Peoples R China
[5] Univ Houston, Dept Phys, Houston, TX 77204 USA
关键词
D O I
10.1103/PhysRevLett.88.046804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The energy spectra and quantum diffusion of an electron in a 1D incommensurate Frenkel-Konturova model are studied numerically. We found that the spectral and dynamical properties of an electron display quite different behaviors in the invariance circle regime and in the Canturus regime. In the former case, it is similar to that of the Harper model, whereas in the latter case, it is similar to that of the Fibonacci model. The relationship between spectral and transport properties is discussed.
引用
收藏
页数:4
相关论文
共 38 条
[1]   FRACTAL AND DYNAMICAL PROPERTIES OF THE KICKED HARPER MODEL [J].
ARTUSO, R ;
CASATI, G ;
BORGONOVI, F ;
REBUZZINI, L ;
GUARNERI, I .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1994, 8 (03) :207-235
[2]   DEVILS STAIRCASE AND ORDER WITHOUT PERIODICITY IN CLASSICAL CONDENSED MATTER [J].
AUBRY, S .
JOURNAL DE PHYSIQUE, 1983, 44 (02) :147-162
[3]   THE TWIST MAP, THE EXTENDED FRENKEL-KONTOROVA MODEL AND THE DEVILS STAIRCASE [J].
AUBRY, S .
PHYSICA D, 1983, 7 (1-3) :240-258
[4]  
Aubry S, 1978, SOLITONS CONDENSED M
[5]   Transport properties of vortices in easy flow channels: A Frenkel-Kontorova study [J].
Besseling, R ;
Niggebrugge, R ;
Kes, PH .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3144-3147
[6]  
Braun OM, 1997, PHYS REV LETT, V78, P1295, DOI 10.1103/PhysRevLett.78.1295
[7]   Nonlinear dynamics of the Frenkel-Kontorova model [J].
Braun, OM ;
Kivshar, YS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 306 (1-2) :1-108
[8]   Phonon localization in one-dimensional quasiperiodic chains [J].
Burkov, SE ;
Koltenbah, BEC ;
Bruch, LW .
PHYSICAL REVIEW B, 1996, 53 (21) :14179-14184
[9]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[10]   Frenkel-Kontorova model of vacancy-line interactions on Ga/Si(112) [J].
Erwin, SC ;
Baski, AA ;
Whitman, LJ ;
Rudd, RE .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1818-1821