The existence of many periodic non-travelling solutions to the Boussinesq equation

被引:4
作者
Crannell, A
机构
[1] Mathematics Department, Franklin and Marshall College, Lancaster
基金
美国国家科学基金会;
关键词
D O I
10.1006/jdeq.1996.0047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper uses variational methods-in particular, a generalization of the Mountain Pass Lemma of Rabinowitz-together with an invariance argument to demonstrate the existence of (weak Sobolev) periodic, non-travelling solutions to the Boussinesq equation partial derivative(2)u/partial derivative t(2) - partial derivative(2)u/partial derivative x(2) - gamma partial derivative(4)u/partial derivative x(4) - g(1) (u, partial derivative u/partial derivative x) - partial derivative/partial derivative x g(2) (u, partial derivative u/partial derivative x) = 0. In certain cases, the author demonstrates the existence of infinitely-many such solutions. The assumptions on the non-linear terms are that they are odd and roughly polynomial, and that they satisfy del G = (g(1), -g(2)) for some G is an element of C-2(R(2); R). (C) 1996 Academic Press, Inc.
引用
收藏
页码:169 / 183
页数:15
相关论文
共 12 条
[1]  
Adams R, 1978, Sobolev spaces
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
Boussinesq J., 1872, J. Math. Pures Appl, V17, P55
[4]  
Brezis H., 1980, COMMUN PUR APPL MATH, V3, P667, DOI DOI 10.1002/CPA.3160330507
[5]  
Champeney D.C., 1989, HDB FOURIER THEOREMS
[7]   PERIODIC-SOLUTIONS ON HYPERSURFACES AND A RESULT BY VITERBO,C. [J].
HOFER, H ;
ZEHNDER, E .
INVENTIONES MATHEMATICAE, 1987, 90 (01) :1-9
[8]  
MAWHIN J, 1989, APPL MATH SCI, V74
[9]  
RABINOWITZ P, 1974, COMMUN PUR APPL MATH, V31, P31
[10]  
Rabinowitz P., 2009, EIGENVALUES NONLINEA