On the von Neumann entropy of a bath linearly coupled to a driven quantum system

被引:20
|
作者
Aurell, Erik [1 ,2 ,3 ,4 ,5 ]
Eichhorn, Ralf [6 ,7 ]
机构
[1] KTH Royal Inst Technol, AlbaNova Univ Ctr, Dept Computat Biol, SE-10691 Stockholm, Sweden
[2] KTH Royal Inst Technol, AlbaNova Univ Ctr, ACCESS Linnaeus Ctr, SE-10691 Stockholm, Sweden
[3] KTH Royal Inst Technol, AlbaNova Univ Ctr, Ctr Quantum Mat, SE-10691 Stockholm, Sweden
[4] Aalto Univ, Dept Informat & Comp Sci, Espoo, Finland
[5] Aalto Univ, Dept Appl Phys, Espoo, Finland
[6] Nordita Royal Inst Technol, SE-10691 Stockholm, Sweden
[7] Stockholm Univ, SE-10691 Stockholm, Sweden
来源
NEW JOURNAL OF PHYSICS | 2015年 / 17卷
基金
芬兰科学院;
关键词
entropy production; von Neumann entropy; Feynman-Vernon; Caldeira-Leggett; FLUCTUATION RELATIONS; ENTANGLEMENT; THEOREM;
D O I
10.1088/1367-2630/17/6/065007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The change of the von Neumann entropy of a set of harmonic oscillators initially in thermal equilibrium and interacting linearly with an externally driven quantum system is computed by adapting the Feynman-Vernon influence functional formalism. This quantum entropy production has the form of the expectation value of three functionals of the forward and backward paths describing the system history in the Feynman-Vernon theory. In the classical limit of Kramers-Langevin dynamics (Caldeira-Leggett model) these functionals combine to three terms, where the first is the entropy production functional of stochastic thermodynamics, the classical work done by the system on the environment in units of k(B)T, and the second and the third other functionals which have no analogue in stochastic thermodynamics.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Von Neumann Entropy from Unitarity
    Boes, Paul
    Eisert, Jens
    Gallego, Rodrigo
    Mueller, Markus P.
    Wilming, Henrik
    PHYSICAL REVIEW LETTERS, 2019, 122 (21)
  • [22] Kurtosis of von Neumann entanglement entropy
    Huang, Youyi
    Wei, Lu
    Collaku, Bjordis
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (50)
  • [23] Skewness of von Neumann entanglement entropy
    Wei, Lu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (07)
  • [24] Perturbation theory of von Neumann entropy
    陈小余
    Chinese Physics B, 2010, (04) : 64 - 70
  • [25] Calculation of von Neumann entropy for hydrogen and positronium negative ions
    Lin, Chien-Hao
    Ho, Yew Kam
    PHYSICS LETTERS A, 2014, 378 (38-39) : 2861 - 2865
  • [26] SCALING OF VON NEUMANN ENTROPY AT THE ANDERSON TRANSITION
    Chakravarty, Sudip
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (12-13): : 1823 - 1840
  • [27] Graph characterizations from von Neumann entropy
    Han, Lin
    Escolano, Francisco
    Hancock, Edwin R.
    Wilson, Richard C.
    PATTERN RECOGNITION LETTERS, 2012, 33 (15) : 1958 - 1967
  • [28] A note on the von Neumann entropy of random graphs
    Du, Wenxue
    Li, Xueliang
    Li, Yiyang
    Severini, Simone
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) : 1722 - 1725
  • [29] A variation on von Neumann Entropy and a result of Varadarajan
    Appleby, Glenn D.
    EXPOSITIONES MATHEMATICAE, 2025, 43 (02)
  • [30] A New Generalization of von Neumann Relative Entropy
    Jing Li
    Huaixin Cao
    International Journal of Theoretical Physics, 2017, 56 : 3405 - 3424