On the von Neumann entropy of a bath linearly coupled to a driven quantum system

被引:20
作者
Aurell, Erik [1 ,2 ,3 ,4 ,5 ]
Eichhorn, Ralf [6 ,7 ]
机构
[1] KTH Royal Inst Technol, AlbaNova Univ Ctr, Dept Computat Biol, SE-10691 Stockholm, Sweden
[2] KTH Royal Inst Technol, AlbaNova Univ Ctr, ACCESS Linnaeus Ctr, SE-10691 Stockholm, Sweden
[3] KTH Royal Inst Technol, AlbaNova Univ Ctr, Ctr Quantum Mat, SE-10691 Stockholm, Sweden
[4] Aalto Univ, Dept Informat & Comp Sci, Espoo, Finland
[5] Aalto Univ, Dept Appl Phys, Espoo, Finland
[6] Nordita Royal Inst Technol, SE-10691 Stockholm, Sweden
[7] Stockholm Univ, SE-10691 Stockholm, Sweden
来源
NEW JOURNAL OF PHYSICS | 2015年 / 17卷
基金
芬兰科学院;
关键词
entropy production; von Neumann entropy; Feynman-Vernon; Caldeira-Leggett; FLUCTUATION RELATIONS; ENTANGLEMENT; THEOREM;
D O I
10.1088/1367-2630/17/6/065007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The change of the von Neumann entropy of a set of harmonic oscillators initially in thermal equilibrium and interacting linearly with an externally driven quantum system is computed by adapting the Feynman-Vernon influence functional formalism. This quantum entropy production has the form of the expectation value of three functionals of the forward and backward paths describing the system history in the Feynman-Vernon theory. In the classical limit of Kramers-Langevin dynamics (Caldeira-Leggett model) these functionals combine to three terms, where the first is the entropy production functional of stochastic thermodynamics, the classical work done by the system on the environment in units of k(B)T, and the second and the third other functionals which have no analogue in stochastic thermodynamics.
引用
收藏
页数:15
相关论文
共 30 条
[1]   Breakdown of the Landauer bound for information erasure in the quantum regime [J].
Allahverdyan, A.E. ;
Nieuwenhuizen, T.M. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 II) :1-056117
[2]   Predicting Short 802.11 Sessions from RADIUS Usage Data [J].
Allandadi, Anisa ;
Morla, Ricardo ;
Aguiart, Ana ;
Cardoso, Jaime S. .
PROCEEDINGS OF THE 2013 38TH ANNUAL IEEE CONFERENCE ON LOCAL COMPUTER NETWORKS WORKSHOPS (LCN WORKSHOPS), 2013, :1-8
[3]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[4]  
Bengtsson I., 2017, A comprehensive geometric approach to quantum entanglement
[5]  
Breuer H. P., 2002, The Theory of Open Quantum Systems
[6]   PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICA A, 1983, 121 (03) :587-616
[7]   Colloquium: Quantum fluctuation relations: Foundations and applications [J].
Campisi, Michele ;
Haenggi, Peter ;
Talkner, Peter .
REVIEWS OF MODERN PHYSICS, 2011, 83 (03) :771-791
[8]   Quantum Fluctuation Relations for the Lindblad Master Equation [J].
Chetrite, R. ;
Mallick, K. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (03) :480-501
[9]   Fluctuation relations for diffusion processes [J].
Chetrite, Raphael ;
Gawedzki, Krzysztof .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (02) :469-518
[10]   Entanglement witnesses: construction, analysis and classification [J].
Chruscinski, Dariusz ;
Sarbicki, Gniewomir .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (48)