A second order discontinuous Galerkin fast sweeping method for Eikonal equations

被引:61
作者
Li, Fengyan [1 ]
Shu, Chi-Wang [2 ]
Zhang, Yong-Tao [3 ]
Zhao, Hongkai [4 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
fast sweeping methods; discontinuous Galerkin finite element methods; second order accuracy; static Hamilton-Jacobi equations; Eikonal equations;
D O I
10.1016/j.jcp.2008.05.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
in this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method. Published by Elsevier Inc.
引用
收藏
页码:8191 / 8208
页数:18
相关论文
共 54 条
[1]  
Abgrall R, 1996, COMMUN PUR APPL MATH, V49, P1339, DOI 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO
[2]  
2-B
[3]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[4]   High order numerical discretization for Hamilton-Jacobi equations on triangular meshes [J].
Augoula S. ;
Abgrall R. .
Journal of Scientific Computing, 2000, 15 (02) :197-229
[5]   Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains [J].
Barth, TJ ;
Sethian, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 145 (01) :1-40
[6]   Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control [J].
Boué, M ;
Dupuis, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :667-695
[7]   High-order central WENO schemes for multidimensional Hamilton-Jacobi equations [J].
Bryson, S ;
Levy, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) :1339-1369
[8]  
Cecil T, 2004, J COMPUT PHYS, V196, P327, DOI [10.1016/j.jcp.2003.11.010, 10.1016/j.jcp. 2003.11.010]
[9]  
CHENG LT, 0716 UCLA CAM
[10]   A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations [J].
Cheng, Yingda ;
Shu, Chi-Wang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (01) :398-415