Milnor classes of local complete intersections

被引:26
作者
Brasselet, JP
Lehmann, D
Seade, J
Suwa, T
机构
[1] CNRS, UPR 9016, Inst Math Luminy, F-13288 Marseille 9, France
[2] Univ Montpellier 2, Dept Math Sci, F-34095 Montpellier, France
[3] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[4] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
D O I
10.1090/S0002-9947-01-02846-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a compact local complete intersection defined as the zero set of a section of a holomorphic vector bundle over the ambient space. For each connected component S of the singular set Sing(V) of V, we define the Milnor class mu(*) (V, S) in the homology of S. The difference between the Schwartz-MacPherson class and the Fulton-Johnson class of V is shown to be equal to the sum of mu(*) (V, S) over the connected components S of Sing(V). This is done by proving Poincare-Hopf type theorems for these classes with respect to suitable tangent frames. The 0-degree component mu(0)(V, S) coincides with the Milnor numbers already defined by various authors in particular situations. We also give an explicit formula for mu(*) (V, S) when S is a non-singular component and V satisfies the Whitney condition along S.
引用
收藏
页码:1351 / 1371
页数:21
相关论文
共 25 条
[1]   Singular schemes of hypersurfaces [J].
Aluffi, P .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (02) :325-351
[2]   Chern classes for singular hypersurfaces [J].
Aluffi, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (10) :3989-4026
[3]  
BAUM P, 1972, J DIFFER GEOM, V7, P279
[4]  
Bott R., 1972, LECT NOTES MATH, V279, P1
[5]  
Brasselet JP, 2000, ADV STU P M, V29, P31
[6]  
BRASSELET JP, 1981, ASTERISQUE, P71
[7]  
BRASSELET JP, 1981, ASTERISQUE, P93
[8]   CANONICAL CLASSES ON SINGULAR VARIETIES [J].
FULTON, W ;
JOHNSON, K .
MANUSCRIPTA MATHEMATICA, 1980, 32 (3-4) :381-389
[9]   THE INDEX OF A HOLOMORPHIC FLOW WITH AN ISOLATED SINGULARITY [J].
GOMEZMONT, X ;
SEADE, J ;
VERJOVSKY, A .
MATHEMATISCHE ANNALEN, 1991, 291 (04) :737-751
[10]   LOCAL TOPOLOGICAL PROPERTIES OF COMPLEX SPACES [J].
HAMM, H .
MATHEMATISCHE ANNALEN, 1971, 191 (03) :235-&