Low-temperature solution-based processing to 7.24% efficient superstrate CuInS2 solar cells

被引:13
作者
Khavar, A. H. Cheshme [1 ]
Mahjoub, A. R. [1 ]
Taghavinia, N. [2 ,3 ]
机构
[1] Tarbiat Modares Univ, Dept Chem, POB 14155-4383, Tehran, Iran
[2] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran 14588, Iran
[3] Sharif Univ Technol, Phys Dept, Tehran 14588, Iran
关键词
Nanoparticles ink; Superstrate structure; Low temerature; THIN-FILMS; GRAIN-GROWTH; DEPOSITION; STRATEGY;
D O I
10.1016/j.solener.2017.08.053
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The fabrication of high performance, solution-processed CIGS family solar cells is based on high-temperature crystallization processes in chalcogen-containing atmosphere and/or using dangerous solvents like hydrazine. The non-hydrazine sulfurization- and selenization-free reports typically suffer from poor grain structures. We report a facile strategy to overcome grain growth limitations at very low temperature processing (250 degrees C). Selenium free Superstrate configuration CuInS2 (CIS) solar cells are fabricated using a nanocrystals ink which avoiding from high temperature selenization or/and sulfurization is targeted. We investigated the effect of intentional M doping (M = Sb, Zn, Cd and Sn) on structural, morphological and photovoltaic response of the fabricated CIS films. It is found that inserting of Sb and Zn leads to improve the CIS crystal growth and surface morphology. Compared with the performance of the non-doped CIS cell, the Sb-doped and Zn-doped CIS solar cell displayed a remarkable efficiency enhancement of 15% and 38%, respectively. The champion device showed promising PCE of 7.24% without any anti-reflection coating. To the best of our knowledge, the obtained eeficiency is the highest efficiency for any non-vacuum deposited Culn(S,Se)(2) superstrate solar cell to date.
引用
收藏
页码:581 / 586
页数:6
相关论文
共 33 条
[1]   Relation of Nanostructure and Recombination Dynamics in a Low-Temperature Solution-Processed CuInS2 Nanocrystalline Solar Cell [J].
Azimi, Hamed ;
Heumueller, Thomas ;
Gerl, Andreas ;
Matt, Gebhard ;
Kubis, Peter ;
Distaso, Monica ;
Ahmad, Rameez ;
Akdas, Tugce ;
Richter, Moses ;
Peukert, Wolfgang ;
Brabec, Christoph J. .
ADVANCED ENERGY MATERIALS, 2013, 3 (12) :1589-1596
[2]   Zn incorporation in CuInSe2: Particle size and strain effects on microstructural and electrical properties [J].
Benabdeslem, M. ;
Bouasla, A. ;
Benslim, N. ;
Bechiri, L. ;
Mehdaoui, S. ;
Aissaoui, O. ;
Djekoun, A. ;
Fromm, M. ;
Portier, X. .
BULLETIN OF MATERIALS SCIENCE, 2014, 37 (03) :469-472
[3]   Nanoparticle-Induced Grain Growth of Carbon-Free Solution-Processed CuIn(S,Se)2 Solar Cell with 6% Efficiency [J].
Cai, Yongan ;
Ho, John C. W. ;
Batabyal, Sudip K. ;
Liu, Wei ;
Sun, Yun ;
Mhaisalkar, Subodh G. ;
Wong, Lydia H. .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (05) :1533-1537
[4]   Low-temperature growth of Na doped CIGS films on flexible polymer substrates by pulsed laser ablation from a Na containing target [J].
Chen, Chia-Chuan ;
Qi, Xiaoding ;
Tsai, Mu-Gong ;
Wu, Yun-Fang ;
Chen, In-Gann ;
Lin, Cen-Ying ;
Wu, Ping-Han ;
Chang, Kuang-Po .
SURFACE & COATINGS TECHNOLOGY, 2013, 231 :209-213
[5]   An all solution-based process for the fabrication of superstrate-type configuration CuInS2 thin film solar cells [J].
Cheshmekhavar, Amir Hossein ;
Mahjoub, Ali Reza ;
Fakhri, Hanieh ;
Dehghani, Mehdi .
RSC ADVANCES, 2015, 5 (118) :97381-97390
[6]  
Chirila A, 2013, NAT MATER, V12, P1107, DOI [10.1038/NMAT3789, 10.1038/nmat3789]
[7]   Fabrication of nanocrystal ink based superstrate-type CuInS2 thin film solar cells [J].
Cho, Jin Woo ;
Park, Se Jin ;
Kim, Woong ;
Min, Byoung Koun .
NANOTECHNOLOGY, 2012, 23 (26)
[8]   Front contact optimization of industrial scale CIGS solar cells for low solar concentration using 2D physical modeling [J].
Delgado-Sanchez, Jose-Maria ;
Lopez-Gonzalez, Juan M. ;
Orpella, Albert ;
Sanchez-Cortezon, Emilio ;
Alba, Maria D. ;
Lopez-Lopez, Carmen ;
Alcubilla, Ramon .
RENEWABLE ENERGY, 2017, 101 :90-95
[9]   Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 solar cells from sulfide nanocrystal inks [J].
Guo, Qijie ;
Ford, Grayson M. ;
Agrawal, Rakesh ;
Hillhouse, Hugh W. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (01) :64-71
[10]   Preparation of a CuInS2 Nanoparticle Ink and Application in a Selenization-Free, Solution-Processed Superstrate Solar Cell [J].
Hossein, Amir ;
Khavar, Cheshme ;
Mahjoub, Ali Reza ;
Tajabadi, Fariba ;
Dehghani, Mehdi ;
Taghavinia, Nima .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2015, (35) :5793-5800