Grey particle swarm optimization

被引:60
作者
Leu, Min-Shyang [1 ]
Yeh, Ming-Feng [1 ]
机构
[1] Lunghwa Univ Sci & Technol, Dept Elect Engn, Tao Yuan 33327, Taiwan
关键词
Evolution computation; Grey relational analysis; Parameter automation strategy; Particle swarm optimization;
D O I
10.1016/j.asoc.2012.04.030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the help of grey relational analysis, this study attempts to propose two grey-based parameter automation strategies for particle swarm optimization (PSO). One is for the inertia weight and the other is for the acceleration coefficients. By the proposed approaches, each particle has its own inertia weight and acceleration coefficients whose values are dependent upon the corresponding grey relational grade. Since the relational grade of a particle is varying over the iterations, those parameters are also time-varying. Even if in the same iteration, those parameters may differ for different particles. In addition, owing to grey relational analysis involving the information of population distribution, such parameter automation strategies make an attempt on the grey PSO to perform a global search over the search space with faster convergence speed. The proposed grey PSO is applied to solve the optimization problems of 12 unimodal and multimodal benchmark functions for illustration. Simulation results are compared with the adaptive PSO (APSO) and two well-known PSO variants, PSO with linearly varying inertia weight (PSO-LVIW) and PSO with time-varying acceleration coefficients (HPSO-TVAC), to demonstrate the search performance of the grey PSO. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2985 / 2996
页数:12
相关论文
共 24 条
[1]   A Survey of Particle Swarm Optimization Applications in Electric Power Systems [J].
AlRashidi, M. R. ;
El-Hawary, M. E. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (04) :913-918
[2]  
Andrews PS, 2006, IEEE C EVOL COMPUTAT, P1029
[3]   Using selection to improve particle swarm optimization [J].
Angeline, PJ .
1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, :84-89
[4]   Particle swarm optimization with recombination and dynamic linkage discovery [J].
Chen, Ying-Ping ;
Peng, Wen-Chih ;
Jian, Ming-Chung .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (06) :1460-1470
[5]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[6]   Particle swarm optimization: Basic concepts, variants and applications in power systems [J].
del Valle, Yamille ;
Venayagamoorthy, Ganesh Kumar ;
Mohagheghi, Salman ;
Hernandez, Jean-Carlos ;
Harley, Ronald G. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (02) :171-195
[7]  
Deng Julong, 1989, Journal of Grey Systems, V1, P1
[8]  
Eberhart R., 1995, MHS 95, P39, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/MHS.1995.494215]
[9]  
Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P94, DOI 10.1109/CEC.2001.934376
[10]  
Eberhart RC, 2000, IEEE C EVOL COMPUTAT, P84, DOI 10.1109/CEC.2000.870279