Bounded synchronization of coupled Kuramoto oscillators with phase lags via distributed impulsive control

被引:17
|
作者
Zhang, Wen-Yi [1 ,2 ]
Yang, Chao [1 ]
Guan, Zhi-Hong [1 ]
Liu, Zhi-Wei [1 ]
Chi, Ming [1 ]
Zheng, Gui-Lin [3 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Automat, Wuhan 430074, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Wuhan Univ, Dept Automat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Kuramoto oscillators; Phase lags; Distributed impulsive control; Bounded synchronization; Exponential convergence; EXPONENTIAL SYNCHRONIZATION; QUASI-SYNCHRONIZATION; NETWORKS; MODEL; DELAYS; SIMULATION; SYSTEMS; DESIGN;
D O I
10.1016/j.neucom.2016.08.054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study the synchronization of networked Kuramoto oscillators with phase lags. Distributed impulsive control strategies are developed to ensure the synchronization of coupled Kuramoto oscillators with phase lags. A sufficient condition is given to ensure bounded synchronization whose boundary can be sufficiently and arbitrary small. Especially, when oscillators are identical and phase lags are uniform, the exponential convergence criteria are derived. The proposed control strategies are valid for arbitrary distributions of phase lags with a boundary. Finally, numerical simulations are given to illustrate the effectiveness of the proposed control strategies.
引用
收藏
页码:216 / 222
页数:7
相关论文
共 50 条
  • [41] Kuramoto Model of Nonlinear Coupled Oscillators as a Way for Understanding Phase Synchronization: Application to Solar and Geomagnetic Indices
    Blanter, Elena M.
    Le Mouel, Jean-Louis
    Shnirman, Mikhail G.
    Courtillot, Vincent
    SOLAR PHYSICS, 2014, 289 (11) : 4309 - 4333
  • [42] Kuramoto Model of Nonlinear Coupled Oscillators as a Way for Understanding Phase Synchronization: Application to Solar and Geomagnetic Indices
    Elena M. Blanter
    Jean-Louis Le Mouël
    Mikhail G. Shnirman
    Vincent Courtillot
    Solar Physics, 2014, 289 : 4309 - 4333
  • [43] Synchronization of Two Coupled Phase Oscillators
    Wu, Yongqing
    Li, Changpin
    Sun, Weigang
    Wu, Yujiang
    DYNAMICAL SYSTEMS AND METHODS, 2012, : 105 - 113
  • [44] Phase synchronization in coupled bistable oscillators
    Jessop, M. R.
    Li, W.
    Armour, A. D.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [45] Noise-to-State Stability of Random Coupled Kuramoto Oscillators via Feedback Control
    Tian, Ning
    Liu, Xiaoqi
    Kang, Rui
    Peng, Cheng
    Li, Jiaxi
    Gao, Shang
    MATHEMATICS, 2024, 12 (23)
  • [46] Phase slips and phase synchronization of coupled oscillators
    Zheng, ZG
    Hu, G
    Hu, B
    PHYSICAL REVIEW LETTERS, 1998, 81 (24) : 5318 - 5321
  • [47] Synchronization of coupled Boolean phase oscillators
    Rosin, David P.
    Rontani, Damien
    Gauthier, Daniel J.
    PHYSICAL REVIEW E, 2014, 89 (04):
  • [48] Phase Synchronization of Coupled Optical Oscillators
    Ding, Jiajie
    Miri, Mohammad-Ali
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [49] Data synchronization via node degree in a network of coupled phase oscillators
    Shiozawa, Kota
    Miyano, Takaya
    Tokuda, Isao T.
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2022, 13 (03): : 534 - 543
  • [50] Chaos control and synchronization in coupled oscillators
    Astakhov, VV
    Silchenko, AN
    Strelkova, GI
    Shabunin, AV
    Anishchenko, VS
    RADIOTEKHNIKA I ELEKTRONIKA, 1996, 41 (11): : 1323 - 1331