Transient carrier transfer in tunnel injection structures

被引:23
作者
Talalaev, V. G. [1 ,2 ,3 ]
Tomm, J. W. [1 ]
Zakharov, N. D. [2 ]
Werner, P. [2 ]
Goesele, U. [2 ]
Novikov, B. V. [3 ]
Sokolov, A. S. [3 ,4 ]
Samsonenko, Y. B. [5 ,6 ,7 ]
Egorov, V. A. [6 ,7 ]
Cirlin, G. E. [5 ,6 ,7 ]
机构
[1] Max Born Inst Nichtlineare Opt & Kurzzeitspektros, D-12489 Berlin, Germany
[2] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Saale, Germany
[3] St Petersburg State Univ, Fock Inst Phys, St Petersburg 198504, Russia
[4] Univ Heidelberg, Fak Phys & Astron, D-69120 Heidelberg, Germany
[5] RAS, AF Ioffe Physicotech Inst, St Petersburg 191021, Russia
[6] RAS, Phys & Technol Ctr Res & Educ, St Petersburg 195220, Russia
[7] RAS, Inst Analyt Instrumentat, St Petersburg 190103, Russia
基金
俄罗斯基础研究基金会;
关键词
Semiconducting indium gallium arsenide - Gallium alloys - Semiconductor alloys - Ground state - Photoluminescence - Photoluminescence spectroscopy - Semiconductor quantum dots - High resolution transmission electron microscopy - Nanocrystals - Indium alloys;
D O I
10.1063/1.2963973
中图分类号
O59 [应用物理学];
学科分类号
摘要
InGaAs tunnel injection nanostructures consisting of a single quantum well as injector and a quantum dot layer as emitter are studied by time-resolved photoluminescence spectroscopy. The quantum dot photoluminescence undergoes substantial changes when proceeding from direct quantum dot excitation to quantum well excitation, which causes an indirect population of the dot ground states. This results in a lowered effective carrier temperature within the dots. Results on the carrier transfer versus barrier thickness are discussed within the Wentzel-Kramers-Brillouin approximation. Deviations for barrier thicknesses < 5 nm are assigned to the formation of nanobridges that are actually detected by transmission electron microscopy. (C) 2008 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 7 条
[1]   Light emission by semiconductor structure with quantum well and array of quantum dots [J].
Evtikhiev, VP ;
Konstantinov, OV ;
Matveentsev, AV ;
Romanov, AE .
SEMICONDUCTORS, 2002, 36 (01) :74-80
[2]   Long wavelength quantum-dot lasers selectively populated using tunnel injection [J].
George, A. A. ;
Smowton, P. M. ;
Mi, Z. ;
Bhattacharya, P. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2007, 22 (05) :557-560
[3]   Interdot carrier transfer in asymmetric bilayer InAs/GaAs quantum dot structures [J].
Mazur, YI ;
Wang, ZM ;
Tarasov, GG ;
Xiao, M ;
Salamo, GJ ;
Tomm, JW ;
Talalaev, V ;
Kissel, H .
APPLIED PHYSICS LETTERS, 2005, 86 (06) :1-3
[4]   High-speed 1.3 μm tunnel injection quantum-dot lasers -: art. no. 153109 [J].
Mi, Z ;
Bhattacharya, P ;
Fathpour, S .
APPLIED PHYSICS LETTERS, 2005, 86 (15) :1-3
[5]  
REGISTER LF, 2002, INT J HIGH SPEED ELE, V12, P239
[6]  
Rosenauer A., 2003, TRANSMISSION ELECT M
[7]   Tuning of the interdot resonance in stacked InAs quantum dot arrays by an external electric field [J].
Talalaev, V. G. ;
Tomm, J. W. ;
Sokolov, A. S. ;
Shtrom, I. V. ;
Novikov, B. V. ;
Winzer, A. T. ;
Goldhahn, R. ;
Gobsch, G. ;
Zakharov, N. D. ;
Werner, P. ;
Goesele, U. ;
Cirlin, G. E. ;
Tonkikh, A. A. ;
Ustinov, V. M. ;
Tarasov, G. G. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (08)