Spectral Collocation-Based Optimization in Parameter Estimation for Nonlinear Time-Varying Dynamical Systems

被引:8
|
作者
Deshmukh, Venkatesh [1 ]
机构
[1] Ctr Nonlinear Dynam & Control, Dept Mech Engn, Villanova, PA 19085 USA
来源
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS | 2008年 / 3卷 / 01期
关键词
NLTV systems; parameter estimation; Chebyshev spectral collocation;
D O I
10.1115/1.2815335
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A constructive optimization algorithm using Chebyshev spectral collocation and quadrati. c programming is proposed for unknown parameter estimation in nonlinear time-varying dynamic system models to be constructed from available data. The parameters to be estimated are assumed to be identifiable from the data, which also implies that the assumed system models with known parameter values have a unique solution corresponding to every initial condition and parameter set. The nonlinear terms in the dynamic system models are assumed to have a known form, and the models are assumed to be parameter affine. Using an equivalent algebraic description of dynamical systems by Chebyshev spectral collocation and data, a residual quadratic cost is set up, which is a function of unknown parameters only. The minimization of this cost yields the unique solution for the unknown parameters since the models arc assumed to have a unique solution for a particular parameter set. An efficient algorithm is presented stepwise and is illustrated using suitable examples. The case of parameter estimation with incomplete or partial data availability is also illustrated with an example.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] An on-line parameter estimator for quick convergence and time-varying linear systems
    Wiberg, DM
    Powell, TD
    Ljungquist, D
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (10) : 1854 - 1863
  • [42] PSO-based parameter estimation of nonlinear systems
    Ye Meiying
    Wang Xiaodong
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 533 - +
  • [43] Approximation of parameter uncertainty in nonlinear optimization-based parameter estimation schemes
    Witkowski, W.R.
    Allen, J.J.
    AIAA journal, 1993, 31 (05): : 947 - 950
  • [44] An Extended Synchronization Method to Identify Slowly Time-Varying Parameters in Nonlinear Systems
    Zhang, Xiaoxu
    Xu, Jian
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (02) : 428 - 437
  • [45] Parameter Estimation and Its Application on Designing Adaptive Nonlinear Model Based Control Schemes for the Time Varying System
    S. Banerjee
    A. Panda
    I. Pandey
    P. Bhowmick
    Automatic Control and Computer Sciences, 2022, 56 : 324 - 336
  • [46] Filtering-Based Accelerated Estimation Approach for Generalized Time-Varying Systems With Disturbances and Colored Noises
    Ji, Yan
    Jiang, Anning
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (01) : 206 - 210
  • [47] A New Recursive Parameter Estimation Algorithm of Multi-Variable Time-Varying AR Model
    曾鹏
    王绍棣
    黄仁
    Journal of Southeast University(English Edition), 1996, (02) : 120 - 125
  • [48] Optimal Parameter Estimation of Transmission Line Using Chaotic Initialized Time-Varying PSO Algorithm
    Shoukat, Abdullah
    Mughal, Muhammad Ali
    Gondal, Saifullah Younus
    Umer, Farhana
    Ejaz, Tahir
    Hussain, Ashiq
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 269 - 285
  • [49] Bayesian approach to parameter estimation and interpolation of time-varying autoregressive processes using the Gibbs sampler
    Rajan, JJ
    Rayner, PJW
    Godsill, SJ
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 1997, 144 (04): : 249 - 256
  • [50] Parameter estimation and modeling of nonlinear dynamical systems based on Runge–Kutta physics-informed neural network
    Weida Zhai
    Dongwang Tao
    Yuequan Bao
    Nonlinear Dynamics, 2023, 111 : 21117 - 21130