Spectral Collocation-Based Optimization in Parameter Estimation for Nonlinear Time-Varying Dynamical Systems

被引:8
作者
Deshmukh, Venkatesh [1 ]
机构
[1] Ctr Nonlinear Dynam & Control, Dept Mech Engn, Villanova, PA 19085 USA
来源
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS | 2008年 / 3卷 / 01期
关键词
NLTV systems; parameter estimation; Chebyshev spectral collocation;
D O I
10.1115/1.2815335
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A constructive optimization algorithm using Chebyshev spectral collocation and quadrati. c programming is proposed for unknown parameter estimation in nonlinear time-varying dynamic system models to be constructed from available data. The parameters to be estimated are assumed to be identifiable from the data, which also implies that the assumed system models with known parameter values have a unique solution corresponding to every initial condition and parameter set. The nonlinear terms in the dynamic system models are assumed to have a known form, and the models are assumed to be parameter affine. Using an equivalent algebraic description of dynamical systems by Chebyshev spectral collocation and data, a residual quadratic cost is set up, which is a function of unknown parameters only. The minimization of this cost yields the unique solution for the unknown parameters since the models arc assumed to have a unique solution for a particular parameter set. An efficient algorithm is presented stepwise and is illustrated using suitable examples. The case of parameter estimation with incomplete or partial data availability is also illustrated with an example.
引用
收藏
页数:7
相关论文
共 30 条
[11]   COLLOCATION AT GAUSSIAN POINTS [J].
DEBOOR, C ;
SWARTZ, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) :582-606
[12]   COMPETITION SYSTEMS WITH PERIODIC COEFFICIENTS - A GEOMETRIC APPROACH [J].
DEMOTTONI, P ;
SCHIAFFINO, A .
JOURNAL OF MATHEMATICAL BIOLOGY, 1981, 11 (03) :319-335
[13]   A MODEL FOR CIRCADIAN OSCILLATIONS IN THE DROSOPHILA PERIOD PROTEIN (PER) [J].
GOLDBETER, A .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1995, 261 (1362) :319-324
[14]   Simulation models to predict oral drug absorption from in vitro data [J].
Grass, GM .
ADVANCED DRUG DELIVERY REVIEWS, 1997, 23 (1-3) :199-219
[15]  
HULME BL, 1972, MATH COMPUT, V26, P415, DOI 10.1090/S0025-5718-1972-0321301-2
[16]  
Kansal Anuraag R, 2004, Diabetes Technol Ther, V6, P39, DOI 10.1089/152091504322783396
[17]   NONPARAMETRIC IDENTIFICATION TECHNIQUE FOR NON-LINEAR DYNAMIC PROBLEMS [J].
MASRI, SF ;
CAUGHEY, TK .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1979, 46 (02) :433-447
[18]   Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation [J].
Mendes, P ;
Kell, DB .
BIOINFORMATICS, 1998, 14 (10) :869-883
[19]  
Mendes Pedro, 2001, P163
[20]  
Sinha S. C., 2005, Communications in Nonlinear Science and Numerical Simulation, V10, P835, DOI 10.1016/j.cnsns.2004.06.001