Spectral Collocation-Based Optimization in Parameter Estimation for Nonlinear Time-Varying Dynamical Systems

被引:8
|
作者
Deshmukh, Venkatesh [1 ]
机构
[1] Ctr Nonlinear Dynam & Control, Dept Mech Engn, Villanova, PA 19085 USA
来源
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS | 2008年 / 3卷 / 01期
关键词
NLTV systems; parameter estimation; Chebyshev spectral collocation;
D O I
10.1115/1.2815335
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A constructive optimization algorithm using Chebyshev spectral collocation and quadrati. c programming is proposed for unknown parameter estimation in nonlinear time-varying dynamic system models to be constructed from available data. The parameters to be estimated are assumed to be identifiable from the data, which also implies that the assumed system models with known parameter values have a unique solution corresponding to every initial condition and parameter set. The nonlinear terms in the dynamic system models are assumed to have a known form, and the models are assumed to be parameter affine. Using an equivalent algebraic description of dynamical systems by Chebyshev spectral collocation and data, a residual quadratic cost is set up, which is a function of unknown parameters only. The minimization of this cost yields the unique solution for the unknown parameters since the models arc assumed to have a unique solution for a particular parameter set. An efficient algorithm is presented stepwise and is illustrated using suitable examples. The case of parameter estimation with incomplete or partial data availability is also illustrated with an example.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Parametric Estimation for Delayed Nonlinear Time-Varying Dynamical Systems
    Deshmukh, Venkatesh
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (04):
  • [2] Adaptive Online Estimation of Time-varying Parameter Nonlinear Systems
    Na, Jing
    Yang, Juan
    Ren, Xuemei
    Guo, Yu
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 4570 - 4575
  • [3] A multi-model algorithm for parameter estimation of time-varying nonlinear systems
    Petridis, V
    Kehagias, A
    AUTOMATICA, 1998, 34 (04) : 469 - 475
  • [4] When artificial parameter evolution gets real: particle filtering for time-varying parameter estimation in deterministic dynamical systems
    Arnold, Andrea
    INVERSE PROBLEMS, 2023, 39 (01)
  • [5] Parameter estimation for a class of time-varying systems with the invariant matrix
    Xu, Ning
    Ding, Feng
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (03) : 2163 - 2181
  • [6] Simultaneous State and Parameter Estimation for a Nonlinear Time-Varying System.
    Viveros, Rodrigo A.
    Yuz, Juan I.
    Perez-Ibacache, Ricardo R.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2014, 11 (03): : 263 - 274
  • [7] Moving horizon estimation for nonlinear systems with time-varying parameters
    Schiller, Julian D.
    Mueller, Matthias A.
    IFAC PAPERSONLINE, 2024, 58 (18): : 341 - 348
  • [8] Parameter estimation of nonlinear dynamical systems based on integrator theory
    Peng, Haipeng
    Li, Lixiang
    Yang, Yixian
    Wang, Cong
    CHAOS, 2009, 19 (03)
  • [9] Parameter estimation for time-varying system based on improved genetic algorithm
    Xue, YC
    Yang, QW
    Qian, JX
    IECON-2002: PROCEEDINGS OF THE 2002 28TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-4, 2002, : 2007 - 2010
  • [10] Convergence analysis of a synchronous gradient estimation scheme for time-varying parameter systems
    Xu, Ning
    Ding, Feng
    Xu, Ling
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 443