A CFD-based Approach to Predict Explosion Overpressure: A Comparison to Current Methods

被引:10
作者
Diaz-Ovalle, C. [1 ]
Lopez-Molina, A. [2 ]
Vazquez-Roman, R. [3 ]
机构
[1] Tecnol Nacl Mexico, Dept Ingn, Inst Tecnol Roque, Km 8 Carretera Celaya Juventino Rosas, Celaya 38110, Gto, Mexico
[2] Univ Juarez Autonoma Tabasco, Div Acad Multidisciplinaria Jalpa de Mendez, Ingn Petroquim, Carretera Estatal Libre Villahermosa Comalcalco K, Jalpa De Mendez 86205, Tab, Mexico
[3] Tecnol Nacl Mexico, Inst Tecnol Celaya, Dept Ingn Quim, Av Tecnol & AG Cubas S-N, Celaya 38010, Gto, Mexico
关键词
CFD; explosion; overpressure; TNO method; COMPUTATIONAL FLUID-DYNAMICS; VAPOR CLOUD; DUST CONCENTRATION; DISPERSION; SIMULATION; VENTILATION; PARAMETERS; IGNITION; ENERGY; MODELS;
D O I
10.15255/CABEQ.2015.2244
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A CFD-based approach has been developed in this work to predict the overpressure produced during an explosion. An adiabatic exothermal reaction allows computing the explosion energy release. To validate the proposed CFD approach, overpressure predictions based on this methodology are compared with results produced with the TNO-based method. It is demonstrated that the physics adopted in our model produces satisfactory predictions in the open area. The CFD simulations were carried out in the ANSYS CFX tool. The source of energy corresponds to the one produced by a stoichiometric proportion in reactants without energy generation. The explosion analysis considered that explosion occurs geometrically as a sequence of control volumes. Thus, the explosion in a volume is assumed to occur when the maximum pressure is achieved in the previous control volume. This way, the explosion is propagated and it is shown that it is equivalent to conventional predicting methods.
引用
收藏
页码:419 / 427
页数:9
相关论文
共 32 条
  • [1] [Anonymous], 1994, GUIDELINES EVALUATIO
  • [2] Recent developments in the Baker-Strehlow VCE analysis methodology
    Baker, QA
    Doolittle, CM
    Fitzgerald, GA
    Tang, MJ
    [J]. PROCESS SAFETY PROGRESS, 1998, 17 (04) : 297 - 301
  • [3] A study on the effect of trees on gas explosions
    Bakke, Jan Roar
    van Wingerden, Kees
    Hoorelbeke, Pol
    Brewerton, Bob
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2010, 23 (06) : 878 - 884
  • [4] Application of computational fluid dynamics for LNG vapor dispersion modeling: A study of key parameters
    Cormier, Benjamin R.
    Qi, Ruifeng
    Yun, GeunWoong
    Zhang, Yingchun
    Mannan, M. Sam
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2009, 22 (03) : 332 - 352
  • [5] The quantitative assessment of domino effects caused by overpressure - Part I. Probit models
    Cozzani, V
    Salzano, E
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2004, 107 (03) : 67 - 80
  • [6] CPR, 2005, 14E CPR MIN VERK WAT
  • [7] CALCULATING THE ENERGY OF EXPLOSION USING THERMODYNAMIC AVAILABILITY
    CROWL, DA
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 1992, 5 (02) : 109 - 118
  • [8] An integrated approach for fire and explosion consequence modelling
    Dadashzadeh, Mohammad
    Khan, Faisal
    Hawboldt, Kelly
    Amyotte, Paul
    [J]. FIRE SAFETY JOURNAL, 2013, 61 : 324 - 337
  • [9] CFD simulations of dust dispersion in the 20 L vessel: Effect of nominal dust concentration
    Di Sarli, V.
    Russo, P.
    Sanchirico, R.
    Di Benedetto, A.
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2014, 27 : 8 - 12
  • [10] CFD analysis of gas explosions vented through relief pipes
    Ferrara, G.
    Di Benedetto, A.
    Salzano, E.
    Russo, G.
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2006, 137 (02) : 654 - 665