A Machine Learning Approach for Classifying Ischemic Stroke Onset Time From Imaging

被引:83
作者
Ho, King Chung [1 ,2 ,3 ]
Speier, William [2 ,3 ]
Zhang, Haoyue [1 ,2 ,3 ]
Scalzo, Fabien [4 ,5 ]
El-Saden, Suzie [2 ,3 ]
Arnold, Corey W. [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90024 USA
[3] Univ Calif Los Angeles, Computat Integrated Diagnost Lab, Los Angeles, CA 90024 USA
[4] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90024 USA
[5] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
基金
美国国家卫生研究院;
关键词
Deep learning; autoencoder; acute ischemic stroke; stroke onset time; MR perfusion imaging; ATTENUATED INVERSION-RECOVERY; OPERATING CHARACTERISTIC CURVES; DWI-FLAIR MISMATCH; WAKE-UP STROKE; CLINICAL STROKE; CT; VOLUME; AUTOENCODERS; THROMBOLYSIS; PREDICTION;
D O I
10.1109/TMI.2019.2901445
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Current clinical practice relies on clinical history to determine the time since stroke (TSS) onset. Imaging-based determination of acute stroke onset time could provide critical information to clinicians in deciding stroke treatment options, such as thrombolysis. The patients with unknown or unwitnessed TSS are usually excluded from thrombolysis, even if their symptoms began within the therapeutic window. In this paper, we demonstrate a machine learning approach for TSS classification using routinely acquired imaging sequences. We develop imaging features from the magnetic resonance (MR) images and train machine learning models to classify the TSS. We also propose a deep-learning model to extract hidden representations for the MR perfusion-weighted images and demonstrate classification improvement by incorporating these additional deep features. The cross-validation results show that our best classifier achieved an area under the curve of 0.765, with a sensitivity of 0.788 and a negative predictive value of 0.609, outperforming existing methods. We show that the features generated by our deep-learning algorithm correlate with the MR imaging features, and validate the robustness of the model on imaging parameter variations (e.g., year of imaging). This paper advances magnetic resonance imaging analysis one-step-closer to an operational decision support tool for stroke treatment guidance.
引用
收藏
页码:1666 / 1676
页数:11
相关论文
共 59 条
[1]  
Ashburner J, 2014, SPM12 MANUAL, DOI [10.1111/j.1365-294X.2006.02813.x, DOI 10.1111/J.1365-294X.2006.02813.X]
[2]  
Benjamin EJ, 2017, CIRCULATION, V135, pE146, DOI [10.1161/CIR.0000000000000485, 10.1161/CIR.0000000000000558, 10.1161/CIR.0000000000000530]
[3]   Statistics review 14: Logistic regression [J].
Bewick, V ;
Cheek, L ;
Ball, J .
CRITICAL CARE, 2005, 9 (01) :112-118
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Reperfusion Therapies for Wake-Up Stroke Systematic Review [J].
Buck, Deborah ;
Shaw, Lisa C. ;
Price, Christopher I. ;
Ford, Gary A. .
STROKE, 2014, 45 (06) :1869-U526
[7]   Cerebral Blood Flow Is the Optimal CT Perfusion Parameter for Assessing Infarct Core [J].
Campbell, Bruce C. V. ;
Christensen, Soren ;
Levi, Christopher R. ;
Desmond, Patricia M. ;
Donnan, Geoffrey A. ;
Davis, Stephen M. ;
Parsons, Mark W. .
STROKE, 2011, 42 (12) :3435-U180
[8]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[9]  
Collobert R., 2011, BIGLEARN NIPS WORKSH, P1
[10]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411