Single-Image Super-Resolution Based on Rational Fractal Interpolation

被引:134
|
作者
Zhang, Yunfeng [1 ]
Fan, Qinglan [1 ]
Bao, Fangxun [2 ]
Liu, Yifang [3 ]
Zhang, Caiming [4 ]
机构
[1] Shandong Univ Finance & Econ, Dept Comp Sci & Technol, Jinan 250014, Shandong, Peoples R China
[2] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
[3] SUNY Buffalo, Univ Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
[4] Shandong Univ, Dept Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution; rational fractal interpolation; image features; scaling factor; local fractal analysis;
D O I
10.1109/TIP.2018.2826139
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel single-image superresolution (SR) procedure, which upscales a given low-resolution (LR) input image to a high-resolution image while preserving the textural and structural information. First, we construct a new type of bivariate rational fractal interpolation model and investigate its analytical properties. This model has different forms of expression with various values of the scaling factors and shape parameters; thus, it can be employed to better describe image features than current interpolation schemes. Furthermore, this model combines the advantages of rational interpolation and fractal interpolation, and its effectiveness is validated through theoretical analysis. Second, we develop a single-image SR algorithm based on the proposed model. The LR input image is divided into texture and non-texture regions, and then, the image is interpolated according to the characteristics of the local structure. Specifically, in the texture region, the scaling factor calculation is the critical step. We present a method to accurately calculate scaling factors based on local fractal analysis. Extensive experiments and comparisons with the other state-of-the-art methods show that our algorithm achieves competitive performance, with finer details and sharper edges.
引用
收藏
页码:3782 / 3797
页数:16
相关论文
共 50 条
  • [41] Deep Learning-Based Single-Image Super-Resolution: A Comprehensive Review
    Chauhan, Karansingh
    Patel, Shail Nimish
    Kumhar, Malaram
    Bhatia, Jitendra
    Tanwar, Sudeep
    Davidson, Innocent Ewean
    Mazibuko, Thokozile F. F.
    Sharma, Ravi
    IEEE ACCESS, 2023, 11 : 21811 - 21830
  • [42] Single-Image Super-Resolution Based on Compact KPCA Coding and Kernel Regression
    Zhou, Fei
    Yuan, Tingrong
    Yang, Wenming
    Liao, Qingmin
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (03) : 336 - 340
  • [43] Single-image super-resolution based on Markov random field and contourlet transform
    Wu, Wei
    Liu, Zheng
    Gueaieb, Wail
    He, Xiaohai
    JOURNAL OF ELECTRONIC IMAGING, 2011, 20 (02)
  • [44] Improved single image super-resolution based on edge directed interpolation
    Zhou, Haiyang
    Yan, Ling
    Zhang, Lei
    Zheng, Rong
    Yu, Feihong
    8TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES, 2016, 9686
  • [45] A Practical Contrastive Learning Framework for Single-Image Super-Resolution
    Wu, Gang
    Jiang, Junjun
    Liu, Xianming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15834 - 15845
  • [46] MATRIX-VALUE REGRESSION FOR SINGLE-IMAGE SUPER-RESOLUTION
    Tang, Yi
    Chen, Hong
    2013 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2013, : 215 - 220
  • [47] Single-Image Super-Resolution based on Steering Kernel and Gaussian Process Regression
    Wang, Haijun
    Nie, Yalin
    Yan, Ben
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (03)
  • [48] Single-image super-resolution with multilevel residual attention network
    Ding Qin
    Xiaodong Gu
    Neural Computing and Applications, 2020, 32 : 15615 - 15628
  • [49] Bayesian Anchored Neighborhood Regression for Single-Image Super-Resolution
    Tang, Yinggan
    Fan, Ailian
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (08) : 5309 - 5327
  • [50] A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution
    Pandey, Garima
    Ghanekar, Umesh
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (01) : 11 - 32