Wavy film flows down an inclined plane: Perturbation theory and general evolution equation for the film thickness

被引:25
作者
Frenkel, AL [1 ]
Indireshkumar, K [1 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
关键词
D O I
10.1103/PhysRevE.60.4143
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Wavy film how of incompressible Newtonian fluid down an inclined plane is considered. The question is posed as to the parametric conditions under which the description of evolution can be approximately reduced for: all time to a single evolution equation for the film thickness. An unconventional perturbation approach yields the most general evolution equation and least restrictive conditions on its validity. The advantages of this equation for analytical and numerical studies of three-dimensional waves in inclined films are pointed out. [S1063-651X(99)10610-X].
引用
收藏
页码:4143 / 4157
页数:15
相关论文
共 38 条
  • [1] Alekseenko S.V., 1994, Wave Flow of Liquid Films
  • [2] [Anonymous], HYDRODYNAM PERM
  • [3] EVOLUTION EQUATION OF SURFACE-WAVES IN A CONVECTING FLUID
    ASPE, H
    DEPASSIER, MC
    [J]. PHYSICAL REVIEW A, 1990, 41 (06): : 3125 - 3128
  • [4] Atherton R., 1976, Chemical Engineering Communications, V2, P57, DOI [10.1080/00986447608960448, 10.1080/ 00986447608960448, DOI 10.1080/00986447608960448]
  • [5] NON-LINEAR SATURATION OF RAYLEIGH-TAYLOR INSTABILITY IN THIN-FILMS
    BABCHIN, AJ
    FRENKEL, AL
    LEVICH, BG
    SIVASHINSKY, GI
    [J]. PHYSICS OF FLUIDS, 1983, 26 (11) : 3159 - 3161
  • [6] LONG WAVES ON LIQUID FILMS
    BENNEY, DJ
    [J]. JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (02): : 150 - &
  • [7] Chang HC, 1996, ADV APPL MECH, V32, P1, DOI 10.1016/S0065-2156(08)70075-9
  • [8] CHIPPADA S, 1994, P 14 IMACS C COMP AP, V2, P633
  • [9] EVOLUTION OF 2-DIMENSIONAL WAVES IN EXTERNALLY PERTURBED FLOW ON A VERTICAL CYLINDER
    DEISSLER, RJ
    ORON, A
    LEE, YC
    [J]. PHYSICAL REVIEW A, 1991, 43 (08): : 4558 - 4561
  • [10] DEMEKHIN EA, 1990, THESIS ACAD SCI USSR