NetMHCpan, a method for MHC class I binding prediction beyond humans

被引:556
作者
Hoof, Ilka [1 ]
Peters, Bjoern [2 ]
Sidney, John [2 ]
Pedersen, Lasse Eggers [3 ]
Sette, Alessandro [2 ]
Lund, Ole [1 ]
Buus, Soren [3 ]
Nielsen, Morten [1 ]
机构
[1] Tech Univ Denmark, Dept Syst Biol, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark
[2] La Jolla Inst Allergy & Immunol, San Diego, CA USA
[3] Univ Copenhagen, Fac Hlth Sci, Expt Immunol Lab, Copenhagen, Denmark
关键词
MHC class I; Binding specificity; Non-human primates; Artificial neural networks; CTL epitopes; PEPTIDE-BINDING; QUANTITATIVE PREDICTIONS; HLA-G; MOLECULES; EPITOPES; SEQUENCE; DATABASE; PROTEIN; IDENTIFICATION; SPECIFICITY;
D O I
10.1007/s00251-008-0341-z
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Binding of peptides to major histocompatibility complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC genomic region (called HLA) is extremely polymorphic comprising several thousand alleles, each encoding a distinct MHC molecule. The potentially unique specificity of the majority of HLA alleles that have been identified to date remains uncharacterized. Likewise, only a limited number of chimpanzee and rhesus macaque MHC class I molecules have been characterized experimentally. Here, we present NetMHCpan-2.0, a method that generates quantitative predictions of the affinity of any peptide-MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I molecules. We show that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and HLA-G. Moreover, NetMHCpan-2.0 is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules. The power of NetMHCpan-2.0 to guide immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 nM. The high performance of NetMHCpan-2.0 for non-human primates documents the method's ability to provide broad allelic coverage also beyond human MHC molecules. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 44 条
  • [1] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [2] The Universal Protein Resource (UniProt)
    Bairoch, Amos
    Bougueleret, Lydie
    Altairac, Severine
    Amendolia, Valeria
    Auchincloss, Andrea
    Puy, Ghislaine Argoud
    Axelsen, Kristian
    Baratin, Delphine
    Blatter, Marie-Claude
    Boeckmann, Brigitte
    Bollondi, Laurent
    Boutet, Emmanuel
    Quintaje, Silvia Braconi
    Breuza, Lionel
    Bridge, Alan
    Saux, Virginie Bulliard-Le
    decastro, Edouard
    Ciampina, Luciane
    Coral, Danielle
    Coudert, Elisabeth
    Cusin, Isabelle
    David, Fabrice
    Delbard, Gwennaelle
    Dornevil, Dolnide
    Duek-Roggli, Paula
    Duvaud, Severine
    Estreicher, Anne
    Famiglietti, Livia
    Farriol-Mathis, Nathalie
    Ferro, Serenella
    Feuermann, Marc
    Gasteiger, Elisabeth
    Gateau, Alain
    Gehant, Sebastian
    Gerritsen, Vivienne
    Gos, Arnaud
    Gruaz-Gumowski, Nadine
    Hinz, Ursula
    Hulo, Chantal
    Hulo, Nicolas
    Innocenti, Alessandro
    James, Janet
    Jain, Eric
    Jimenez, Silvia
    Jungo, Florence
    Junker, Vivien
    Keller, Guillaume
    Lachaize, Corinne
    Lane-Guermonprez, Lydie
    Langendijk-Genevaux, Petra
    [J]. NUCLEIC ACIDS RESEARCH, 2008, 36 : D190 - D195
  • [3] Brusic Vladimir., 1994, Complex Systems: Mechanism of Adaptation, P253
  • [4] Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach
    Buus, S
    Lauemoller, SL
    Worning, P
    Kesmir, C
    Frimurer, T
    Corbet, S
    Fomsgaard, A
    Hilden, J
    Holm, A
    Brunak, S
    [J]. TISSUE ANTIGENS, 2003, 62 (05): : 378 - 384
  • [5] Structural studies on HLA-G: Implications for ligand and receptor binding
    Clements, Craig S.
    Kjer-Nielsen, Lars
    McCluskey, James
    Rossjohn, Jamie
    [J]. HUMAN IMMUNOLOGY, 2007, 68 (04) : 220 - 226
  • [6] Nonclassical HLA-G molecules are classical peptide presenters
    Diehl, M
    Munz, C
    Keilholz, W
    Stevanovic, S
    Holmes, N
    Loke, YW
    Rammensee, HG
    [J]. CURRENT BIOLOGY, 1996, 6 (03) : 305 - 314
  • [7] Prediction of MHC class I binding peptides, using SVMHC -: art. no. 25
    Dönnes, P
    Elofsson, A
    [J]. BMC BIOINFORMATICS, 2002, 3 (1)
  • [8] ALLELE-SPECIFIC MOTIFS REVEALED BY SEQUENCING OF SELF-PEPTIDES ELUTED FROM MHC MOLECULES
    FALK, K
    ROTZSCHKE, O
    STEVANOVIC, S
    JUNG, G
    RAMMENSEE, HG
    [J]. NATURE, 1991, 351 (6324) : 290 - 296
  • [9] Purification of correctly oxidized MHC class I heavy-chain molecules under denaturing conditions:: A novel strategy exploiting disulfide assisted protein folding
    Ferré, H
    Ruffet, E
    Blicher, T
    Sylvester-Hvid, C
    Nielsen, LLB
    Hobley, TJ
    Thomas, ORT
    Buus, S
    [J]. PROTEIN SCIENCE, 2003, 12 (03) : 551 - 559
  • [10] Extensive HLA class I allele promiscuity among viral CTL epitopes
    Frahm, Nicole
    Yusim, Karina
    Suscovich, Todd J.
    Adams, Sharon
    Sidney, John
    Hraber, Peter
    Hewitt, Hannah S.
    Linde, Caitlyn H.
    Kavanagh, Daniel G.
    Woodberry, Tonia
    Henry, Leah M.
    Faircloth, Kellie
    Listgarten, Jennifer
    Kadie, Carl
    Jojic, Nebojsa
    Sango, Kaori
    Brown, Nancy V.
    Pae, Eunice
    Zaman, M. Tauheed
    Bihl, Florian
    Khatri, Ashok
    John, Mina
    Mallal, Simon
    Marincola, Francesco M.
    Walker, Bruce D.
    Sette, Alessandro
    Heckerman, David
    Korber, Bette T.
    Brander, Christian
    [J]. EUROPEAN JOURNAL OF IMMUNOLOGY, 2007, 37 (09) : 2419 - 2433