Symmetry energy in nuclear density functional theory

被引:39
作者
Nazarewicz, W. [1 ,2 ,3 ]
Reinhard, P. -G. [4 ]
Satula, W. [3 ]
Vretenar, D. [5 ]
机构
[1] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland
[4] Univ Erlangen Nurnberg, Inst Theoret Phys, D-90158 Erlangen, Germany
[5] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia
关键词
HARTREE-BOGOLIUBOV THEORY; SELF-CONSISTENT; NEUTRON RADII; EQUATION; STATE; SCATTERING;
D O I
10.1140/epja/i2014-14020-3
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this paper we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side by side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 97 条
  • [1] Measurement of the Neutron Radius of 208Pb through Parity Violation in Electron Scattering
    Abrahamyan, S.
    Ahmed, Z.
    Albataineh, H.
    Aniol, K.
    Armstrong, D. S.
    Armstrong, W.
    Averett, T.
    Babineau, B.
    Barbieri, A.
    Bellini, V.
    Beminiwattha, R.
    Benesch, J.
    Benmokhtar, F.
    Bielarski, T.
    Boeglin, W.
    Camsonne, A.
    Canan, M.
    Carter, P.
    Cates, G. D.
    Chen, C.
    Chen, J-P
    Hen, O.
    Cusanno, F.
    Dalton, M. M.
    De Leo, R.
    de Jager, K.
    Deconinck, W.
    Decowski, P.
    Deng, X.
    Deur, A.
    Dutta, D.
    Etile, A.
    Flay, D.
    Franklin, G. B.
    Friend, M.
    Frullani, S.
    Fuchey, E.
    Garibaldi, F.
    Gasser, E.
    Gilman, R.
    Giusa, A.
    Glamazdin, A.
    Gomez, J.
    Grames, J.
    Gu, C.
    Hansen, O.
    Hansknecht, J.
    Higinbotham, D. W.
    Holmes, R. S.
    Holmstrom, T.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (11)
  • [2] [Anonymous], 2000, NUCL MANY BODY PROBL
  • [3] [Anonymous], 1996, QUANTUM THEORY FIELD
  • [4] [Anonymous], 2004, lecture notes in physics
  • [5] Pairing gaps from nuclear mean-field models
    Bender, M
    Rutz, K
    Reinhard, PG
    Maruhn, JA
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2000, 8 (01) : 59 - 75
  • [6] What can be learned from binding energy differences about nuclear structure: The example of δVpn
    Bender, M.
    Heenen, P. -H.
    [J]. PHYSICAL REVIEW C, 2011, 83 (06):
  • [7] Self-consistent mean-field models for nuclear structure
    Bender, M
    Heenen, PH
    Reinhard, PG
    [J]. REVIEWS OF MODERN PHYSICS, 2003, 75 (01) : 121 - 180
  • [8] Testing the density matrix expansion against ab initio calculations of trapped neutron drops
    Bogner, S. K.
    Furnstahl, R. J.
    Hergert, H.
    Kortelainen, M.
    Maris, P.
    Stoitsov, M.
    Vary, J. P.
    [J]. PHYSICAL REVIEW C, 2011, 84 (04):
  • [9] Bohr A., 1969, Nuclear Structure
  • [10] SELF-CONSISTENT STUDY OF TRIAXIAL DEFORMATIONS - APPLICATION TO THE ISOTOPES OF KR, SR, ZR AND MO
    BONCHE, P
    FLOCARD, H
    HEENEN, PH
    KRIEGER, SJ
    WEISS, MS
    [J]. NUCLEAR PHYSICS A, 1985, 443 (01) : 39 - 63