Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan

被引:24
作者
Rasheed, S. B. [1 ,2 ]
Boots, M. [3 ]
Frantz, A. C. [4 ]
Butlin, R. K. [1 ]
机构
[1] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Peshawar, Dept Zool, Peshawar 25120, Pakistan
[3] Univ Exeter, Dept Biosci, Penryn, England
[4] Univ Greifswald, Inst Zool, Greifswald, Germany
关键词
Aedes aegypti; dengue; microsatellite; population structure; Pakistan; YELLOW-FEVER MOSQUITO; SPATIAL GENETIC-STRUCTURE; LENGTH POLYMORPHISM AFLP; DIPTERA-CULICIDAE; COMPUTER-PROGRAM; F-STATISTICS; MICROSATELLITE; DIFFERENTIATION; DISPERSAL; COLONIZATION;
D O I
10.1111/mve.12001
中图分类号
Q96 [昆虫学];
学科分类号
摘要
Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long-range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human-aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.
引用
收藏
页码:430 / 440
页数:11
相关论文
共 88 条
[61]   Introduction history of Drosophila subobscura in the New World:: a microsatellite-based survey using ABC methods [J].
Pascual, M. ;
Chapuis, M. P. ;
Mestres, F. ;
Balanya, J. ;
Huey, R. B. ;
Gilchrist, G. W. ;
Serra, L. ;
Estoup, A. .
MOLECULAR ECOLOGY, 2007, 16 (15) :3069-3083
[62]   Insecticide resistance genes in mosquitoes: Their mutations, migration, and selection in field populations [J].
Pasteur, N ;
Raymond, M .
JOURNAL OF HEREDITY, 1996, 87 (06) :444-449
[63]  
Paul R E, 1998, Int J Infect Dis, V2, P197, DOI 10.1016/S1201-9712(98)90052-2
[64]   Comparisons of amplified fragment length polymorphism (AFLP), microsatellite, and isoenzyme markers:: Population genetics of Aedes aegypti (Diptera: Culicidae) from Phnom Penh (Cambodia) [J].
Paupy, C ;
Orsoni, A ;
Mousson, L ;
Huber, K .
JOURNAL OF MEDICAL ENTOMOLOGY, 2004, 41 (04) :664-671
[65]  
Paupy C, 2008, J MED ENTOMOL, V45, P391, DOI 10.1603/0022-2585(2008)45[391:GFBDAS]2.0.CO
[66]  
2
[67]  
Pritchard JK, 2000, GENETICS, V155, P945
[68]   Geography predicts neutral genetic diversity of human populations [J].
Prugnolle, F ;
Manica, A ;
Balloux, F .
CURRENT BIOLOGY, 2005, 15 (05) :R159-R160
[69]  
QUTUBUDDIN M., 1960, MOSQUITO NEWS, V20, P355
[70]   A preliminary study of the population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using microsatellite and AFLP markers [J].
Ravel, S ;
Monteny, N ;
Olmos, DV ;
Verdugo, JE ;
Cuny, G .
ACTA TROPICA, 2001, 78 (03) :241-250