Computing clique and chromatic number of circular-perfect graphs in polynomial time

被引:4
作者
Pecher, Arnaud [1 ]
Wagler, Annegret K. [2 ]
机构
[1] Univ Bordeaux, INRIA Sud Ouest, Lab Bordelais Rech Informat LaBRI, F-33405 Talence, France
[2] Univ Clermont Ferrand, CNRS, LIMOS, F-63173 Aubiere, France
关键词
Circular-perfect graph; Clique number; Chromatic number;
D O I
10.1007/s10107-012-0512-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grotschel et al. in Combinatorica 1(2):169-197, 1981). Perfect graphs have the key property that clique and chromatic number coincide for all induced subgraphs; we address the question whether the algorithmic results for perfect graphs can be extended to graph classes where the chromatic number of all members is bounded by the clique number plus one. We consider a well-studied superclass of perfect graphs satisfying this property, the circular-perfect graphs, and show that for such graphs both clique and chromatic number are computable in polynomial time as well. In addition, we discuss the polynomial time computability of further graph parameters for certain subclasses of circular-perfect graphs. All the results strongly rely upon Lovasz's Theta function.
引用
收藏
页码:121 / 133
页数:13
相关论文
共 26 条
[1]  
Bachoc C., 2011, ARXIV11030444
[2]   Convex-round graphs are circular-perfect [J].
Bang-Jensen, J ;
Huang, J .
JOURNAL OF GRAPH THEORY, 2002, 40 (03) :182-194
[3]   A NOTE ON THE STAR CHROMATIC NUMBER [J].
BONDY, JA ;
HELL, P .
JOURNAL OF GRAPH THEORY, 1990, 14 (04) :479-482
[4]   CERTAIN POLYTOPES ASSOCIATED WITH GRAPHS [J].
CHVATAL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) :138-154
[5]   Triangle-free strongly circular-perfect graphs [J].
Coulonges, Sylvain ;
Pecher, Arnaud ;
Wagler, Annegret K. .
DISCRETE MATHEMATICS, 2009, 309 (11) :3632-3643
[6]  
Deuber WA, 1996, J GRAPH THEOR, V23, P365, DOI 10.1002/(SICI)1097-0118(199612)23:4<365::AID-JGT6>3.0.CO
[7]  
2-P
[8]  
Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1
[9]   THE ELLIPSOID METHOD AND ITS CONSEQUENCES IN COMBINATORIAL OPTIMIZATION [J].
GROTSCHEL, M ;
LOVASZ, L ;
SCHRIJVER, A .
COMBINATORICA, 1981, 1 (02) :169-197
[10]  
Grotschel M., 1984, TOPICS PERFECT GRAPH, V88, P325