The persistence of a general nonautonomous single-species Kolmogorov system with delays

被引:4
作者
Yang, Xitao [1 ]
机构
[1] Hunan Univ Sci & Technol, Dept Math, Xiantan 411201, Hunan, Peoples R China
关键词
Persistence; Nonautonomous system; Delay; Kolmogorov system; OSCILLATION; STABILITY; EQUATION;
D O I
10.1016/j.na.2008.02.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some sufficient conditions for the persistence of system x '(t) = x(t) f(t, x(t)) without the condition that f (t, phi) is monotonously decreasing with respect to phi. This partly answers the open problems proposed by Teng. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1422 / 1429
页数:8
相关论文
共 16 条
[11]   UNIFORM PERSISTENCE AND REPELLORS FOR MAPS [J].
HOFBAUER, J ;
SO, JWH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 107 (04) :1137-1142
[12]  
Kuang Y., 1993, Delay Differential Equations with Applications in Population Dynamics
[13]  
Teng Zhidong, 1999, Acta Mathematicae Applicatae Sinica, V22, P446
[14]   Persistence and stability in general nonautonomous single-species Kolmogorov systems with delays [J].
Teng, Zhidong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (01) :230-248
[15]   A NONAUTONOMOUS MODEL OF POPULATION-GROWTH [J].
VANCE, RR ;
CODDINGTON, EA .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (05) :491-506
[16]   Global attractivity and oscillation in a nonlinear delay equation [J].
Yan, JR ;
Feng, QX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (01) :101-108