Periodic Flows Analysis of a Nonlinear Power System Based on Discrete Implicit Mapping

被引:0
作者
Liu, Duyu [1 ,2 ]
Xiao, Gang [2 ]
Liu, Xingwen [1 ]
Dai, Zhouyun [2 ]
机构
[1] Southwest Univ Nationalities China, Coll Elect & Informat Engn, Chengdu 610041, Sichuan, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
来源
2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC) | 2017年
基金
中国国家自然科学基金;
关键词
Bifurcation tree; Implicit mapping; Period-1 motion to chaos; Single-machine-infinite-bus System; Swing equation; BIFURCATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study focuses on the periodic solutions of single-machine-infinite-bus system under a periodic load disturbance. The qualitative behavior of this system is described by the well-known 'swing equation', which is a nonlinear second-order differential equation. Periodic solutions of the system are analytically predicted through discrete implicit mapping. The discrete implicit maps are obtained from the swing equation. From mapping structures, bifurcation trees of periodic solutions of the simple connection power system are predicted analytically, and the corresponding stability and bifurcation analysis of periodic solutions are carried out through eigenvalue analysis. Finally, from the analytical prediction, numerical results of periodic solutions are performed by numerical method of the differential equation to show good agreements.
引用
收藏
页码:1640 / 1645
页数:6
相关论文
共 20 条
  • [1] Dynamic analysis, controlling chaos and chaotification of a SMIB power system
    Chen, HK
    Lin, TN
    Chen, JH
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 24 (05) : 1307 - 1315
  • [2] Chaotic and subharmonic oscillations of a nonlinear power system
    Chen, XW
    Zhang, WN
    Zhang, WD
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2005, 52 (12) : 811 - 815
  • [3] Output-feedback IDA stabilisation of an SMIB system using a TCSC
    Espinosa-Perez, Gerardo
    Maya-Ortiz, Paul
    Doria-Cerezo, Arnau
    Moreno, Jaime A.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (12) : 2471 - 2482
  • [4] Fatou P., 1928, B SOC MATH, V56, P98, DOI DOI 10.24033/BSMF.1131
  • [5] Hard-limit induced chaos in a fundamental power system model
    Ji, W
    Venkatasubramanian, V
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1996, 18 (05) : 279 - 295
  • [6] Krylov N.M., 1935, Methodes approchees de la mecanique nonlineaire dans leurs application a l'Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s'y rapportant
  • [7] Voltage stability - Case study of saddle node bifurcation with stochastic load dynamics
    Kumaran, R. Chendur
    Venkatesh, T. G.
    Swarup, K. S.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (08) : 1384 - 1388
  • [8] Lagrange J. -L., 1788, Mechanique Analytique
  • [9] Wide-area power system stabiliser based on model-free adaptive control
    Lu, Chao
    Zhao, Yi
    Men, Kun
    Tu, Liang
    Han, Yingduo
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (13) : 1996 - 2007
  • [10] Lu Qiang, 1993, NONLINEAR CONTROL PO