Learning Cooperation Schemes for Mobile Edge Computing Empowered Internet of Vehicles

被引:2
|
作者
Cao, Jiayu [1 ]
Zhang, Ke [1 ]
Wu, Fan [1 ]
Leng, Supeng [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
来源
2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC) | 2020年
基金
国家重点研发计划;
关键词
Federated Learning; MEC; Vehicular networks;
D O I
10.1109/wcnc45663.2020.9120493
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intelligent Transportation System has emerged as a promising paradigm providing efficient traffic management while enabling innovative transport services. The implementation of ITS always demands intensive computation processing under strict delay constraints. Machine Learning empowered Mobile Edge Computing (MEC), which brings intelligent computing service to the proximity of smart vehicles, is a potential approach to meet the processing demands. However, directly offloading and calculating these computation tasks in MEC servers may seriously impair the privacy of end users. To address this problem, we leverage federated learning in MEC empowered internet of vehicles to protect task data privacy. Moreover, we propose optimized learning cooperation schemes, which adaptively take smart vehicles and road side units to act as learning agents, and significantly reduce the learning costs in task execution. Numerical results demonstrate the effectiveness of our schemes.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Blockchain Empowered Federated Learning with Edge Computing for Digital Twin Systems in Urban Air Mobility
    Nguyen, Tuan Anh
    Kaliappan, Vishnu Kumar
    Jeon, Sangwoo
    Jeon, Kwon-Su
    Lee, Jae-Woo
    Min, Dugki
    PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 2, 2023, 913 : 935 - 950
  • [32] D2D-Assisted Federated Learning in Mobile Edge Computing Networks
    Zhang, Xueqing
    Liu, Yanwei
    Liu, Jinxia
    Argyriou, Antonios
    Han, Yanni
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [33] Latency Optimization for Blockchain-Empowered Federated Learning in Multi-Server Edge Computing
    Nguyen, Dinh C.
    Hosseinalipour, Seyyedali
    Love, David J.
    Pathirana, Pubudu N.
    Brinton, Christopher G.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (12) : 3373 - 3390
  • [34] Mobility-aware Task Offloading and Migration Schemes in SCNs with Mobile Edge Computing
    Liu, Zhaolin
    Wang, Xiaoxiang
    Wang, Dongyu
    Lan, Yanwen
    Hou, Junxu
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [35] Personalized client-edge-cloud hierarchical federated learning in mobile edge computing
    Ma, Chunmei
    Li, Xiangqian
    Huang, Baogui
    Li, Guangshun
    Li, Fengyin
    Journal of Cloud Computing, 2024, 13 (01)
  • [36] Federated Learning-based Power Control and Computing for Mobile Edge Computing System
    Yang, Tianlong
    Li, Xinmin
    Shao, Hua
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [37] Hybrid Learning: When Centralized Learning Meets Federated Learning in the Mobile Edge Computing Systems
    Feng, Chenyuan
    Yang, Howard H.
    Wang, Siye
    Zhao, Zhongyuan
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (12) : 7008 - 7022
  • [38] Reliable Federated Learning for Age Sensitive Mobile Edge Computing Systems
    Abdellatif, Alaa Awad
    Allahham, Mhd Saria
    Khial, Noor
    Mohamed, Amr
    Erbad, Aiman
    Shaban, Khaled
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 1622 - 1627
  • [39] FedCime: An Efficient Federated Learning Approach For Clients in Mobile Edge Computing
    Agbaje, Paul
    Anjum, Afia
    Talukder, Zahidur
    Islam, Mohammad
    Nwafor, Ebelechukwu
    Olufowobi, Habeeb
    2023 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND COMMUNICATIONS, EDGE, 2023, : 215 - 220
  • [40] Distributed hierarchical deep optimization for federated learning in mobile edge computing
    Zheng, Xiao
    Shah, Syed Bilal Hussain
    Bashir, Ali Kashif
    Nawaz, Raheel
    Rana, Umer
    COMPUTER COMMUNICATIONS, 2022, 194 : 321 - 328