Low-Temperature Atomic Layer Deposition of High Purity, Smooth, Low Resistivity Copper Films by Using Amidinate Precursor and Hydrogen Plasma

被引:65
作者
Guo, Zheng [1 ]
Li, Hao [2 ]
Chen, Qiang [1 ]
Sang, Lijun [1 ]
Yang, Lizhen [1 ]
Liu, Zhongwei [1 ]
Wang, Xinwei [2 ]
机构
[1] Beijing Inst Graph Commun, Lab Plasma Phys & Mat, Beijing 102600, Peoples R China
[2] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China
关键词
THIN-FILMS; METAL-FILMS; ALD; SURFACE; GROWTH; H-2; CVD;
D O I
10.1021/acs.chemmater.5b02137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Agglomeration is a critical issue for depositing copper (Cu) thin films, and therefore, the deposition should be preferably performed below 100 degrees C. This work explores an atomic layer deposition (ALD) process for copper thin films deposited at temperature as low as 50 degrees C. The process employs copper(I)-N,N'-diisopropylacetamidinate precursor and H-2 plasma, which are both highly reactive at low temperature. The deposition process below 100 degrees C follows an ideal self-limiting ALD fashion with a saturated growth rate of 0.071 nm/cycle. Benefitting from the low process temperature, the agglomeration of Cu thin films is largely suppressed, and the Cu films deposited at 50 degrees C are pure, continuous, smooth, and highly conformal, with the resistivity comparable to PVD Cu films. In-situ reaction mechanism studies by using quartz crystal microbalance and optical emission spectroscopy are followed, and the results confirm the high reactivity of the Cu amidinate precursor at low temperature. To the best of our knowledge, this is the first successful implementation of metal amidinate precursors for low-temperature (similar to 50 degrees C) ALD process. The strategy of using metal amidinate precursors in combination with highly reactive H-2 plasma is believed to be extendable for the depositions of other pure metals at low temperature.
引用
收藏
页码:5988 / 5996
页数:9
相关论文
共 31 条
[1]   Real time resistivity measurements during sputter deposition of ultrathin copper films [J].
Barnat, EV ;
Nagakura, D ;
Wang, PI ;
Lu, TM .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (03) :1667-1672
[2]   Surface and Interface Processes during Atomic Layer Deposition of Copper on Silicon Oxide [J].
Dai, Min ;
Kwon, Jinhee ;
Halls, Mathew D. ;
Gordon, Roy G. ;
Chabal, Yves J. .
LANGMUIR, 2010, 26 (06) :3911-3917
[3]   Spectroscopic diagnostics of the vibrational population in the ground state of H2 and D2 molecules [J].
Fantz, U ;
Heger, B .
PLASMA PHYSICS AND CONTROLLED FUSION, 1998, 40 (12) :2023-2032
[4]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131
[5]   Trends in Copper Precursor Development for CVD and ALD Applications [J].
Gordon, Peter G. ;
Kurek, Agnieszka ;
Barry, Sean T. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2015, 4 (01) :N3188-N3197
[6]   An experimental comparison of rotational temperature and gas kinetic temperature in a H-2 discharge [J].
Goyette, AN ;
Jameson, WB ;
Anderson, LW ;
Lawler, JE .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1996, 29 (05) :1197-1201
[7]   Reaction mechanisms during plasma-assisted atomic layer deposition of metal oxides:: A case study for Al2O3 [J].
Heil, S. B. S. ;
van Hemmen, J. L. ;
de Sanden, M. C. M. van ;
Kessels, W. M. M. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (10)
[8]   Inductively coupled hydrogen plasma-assisted Cu ALD on metallic and dielectric surfaces [J].
Jezewski, C ;
Lanford, WA ;
Wiegand, CJ ;
Singh, JP ;
Wang, PI ;
Senkevich, JJ ;
Lu, TM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :C60-C64
[9]   The sticking probability for H2 on some transition metals at a hydrogen pressure of 1 bar [J].
Johansson, M. ;
Lytken, O. ;
Chorkendorff, I. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (03)
[10]   A brief review of atomic layer deposition: from fundamentals to applications [J].
Johnson, Richard W. ;
Hultqvist, Adam ;
Bent, Stacey F. .
MATERIALS TODAY, 2014, 17 (05) :236-246