Practical Chemical Sensors from Chemically Derived Graphene

被引:1223
作者
Fowler, Jesse D. [3 ]
Allen, Matthew J. [1 ,2 ]
Tung, Vincent C. [2 ,4 ]
Yang, Yang [2 ,4 ]
Kaner, Richard B. [1 ,2 ,4 ]
Weiller, Bruce H. [3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] Aerosp Corp, Space Mat Lab, Mat Proc & Evaluat Dept, Los Angeles, CA 90009 USA
[4] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
hydrazine; micro hot plate; nitrogen dioxide; ammonia; 2,4-dinitrotoluene; CARBON NANOTUBES; GAS; OXIDE; VAPOR; 2,4-DINITROTOLUENE; ADSORPTION; NANOSHEETS; MOLECULES; CONTACT;
D O I
10.1021/nn800593m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the development of useful chemical sensors from chemically convened graphene dispersions using spin coating to create single-layer films on interdigitated electrode arrays. Dispersions of graphene in anhydrous hydrazine are formed from graphite oxide. Preliminary results are presented on the detection of NO2, NH3, and 2,4-dinitrotoluene using this simple and scalable fabrication method for practical devices. Current versus voltage curves are linear and ohmic in all cases, studied independent of metal electrode or presence of analytes. The sensor response is consistent with a charge transfer mechanism between the analyte and graphene with a limited role of the electrical contacts. A micro hot plate sensor substrate is also used to monitor the temperature dependence of the response to nitrogen dioxide. The results are discussed in light of
引用
收藏
页码:301 / 306
页数:6
相关论文
共 30 条
[1]   Temperature dependent Raman spectroscopy of chemically derived graphene [J].
Allen, Matthew J. ;
Fowler, Jesse D. ;
Tung, Vincent C. ;
Yang, Yang ;
Weiller, Bruce H. ;
Kaner, Richard B. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[2]   Short-channel effects in contact-passivated nanotube chemical sensors [J].
Bradley, K ;
Gabriel, JCP ;
Star, A ;
Grüner, G .
APPLIED PHYSICS LETTERS, 2003, 83 (18) :3821-3823
[3]   Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors [J].
Briand, D ;
Krauss, A ;
van der Schoot, B ;
Weimar, U ;
Barsan, N ;
Göpel, W ;
de Rooij, NF .
SENSORS AND ACTUATORS B-CHEMICAL, 2000, 68 (1-3) :223-233
[4]   Adsorption of NH3 and NO2 molecules on carbon nanotubes [J].
Chang, H ;
Lee, JD ;
Lee, SM ;
Lee, YH .
APPLIED PHYSICS LETTERS, 2001, 79 (23) :3863-3865
[5]   Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J].
Collins, PG ;
Bradley, K ;
Ishigami, M ;
Zettl, A .
SCIENCE, 2000, 287 (5459) :1801-1804
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   A chemical route to graphene for device applications [J].
Gilje, Scott ;
Han, Song ;
Wang, Minsheng ;
Wang, Kang L. ;
Kaner, Richard B. .
NANO LETTERS, 2007, 7 (11) :3394-3398
[8]   Electronic transport properties of individual chemically reduced graphene oxide sheets [J].
Gomez-Navarro, Cristina ;
Weitz, R. Thomas ;
Bittner, Alexander M. ;
Scolari, Matteo ;
Mews, Alf ;
Burghard, Marko ;
Kern, Klaus .
NANO LETTERS, 2007, 7 (11) :3499-3503
[9]   Investigation of contact and bulk resistance of conducting polymers by simultaneous two- and four-point technique [J].
Hao, QL ;
Kulikov, V ;
Mirsky, VA .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 94 (03) :352-357
[10]   Carbon nanotubes as Schottky barrier transistors [J].
Heinze, S ;
Tersoff, J ;
Martel, R ;
Derycke, V ;
Appenzeller, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2002, 89 (10)