Coincidences in generalized Fibonacci sequences

被引:37
作者
Bravo, Jhon J. [1 ]
Luca, Florian [2 ]
机构
[1] Univ Cauca, Dept Matemat, Popayan, Colombia
[2] Inst Ciencias Nucl UNAM, Fdn Marcos Moshinsky, CU, Apdo Postal 70-543, Mexico City 04510, DF, Mexico
关键词
Fibonacci numbers; Lower bounds for non-zero linear forms in logarithms of algebraic numbers;
D O I
10.1016/j.jnt.2012.11.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The k-generalized Fibonacci sequence (F-n((k)))(n) resembles the Fibonacci sequence in that it starts with 0, ... ,0, 1 (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we are interested in finding the integers that appear in different generalized Fibonacci sequences; i.e., we study the Diophantine equation F-n((k)) = F-m((l)) in positive integers n, k, m, l with k, l >= 2. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2121 / 2137
页数:17
相关论文
共 6 条
[1]   On a conjecture about repdigits in k-generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :623-639
[2]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[3]  
Dresden G.P., 2011, PREPRINT
[4]   A generalization of a theorem of Baker and Davenport [J].
Dujella, A ;
Petho, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (195) :291-306
[5]   An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II [J].
Matveev, EM .
IZVESTIYA MATHEMATICS, 2000, 64 (06) :1217-1269
[6]  
Wolfram DA, 1998, FIBONACCI QUART, V36, P129