A remark on Gelfand-Graev characters for finite simple groups

被引:2
作者
Zalesski, A. E. [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20126 Milan, Italy
关键词
Gelfand-Graev character; Finite simple groups; POWER DEGREE REPRESENTATIONS; BLOCKS;
D O I
10.1007/s00013-013-0491-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The famous Gelfand-Graev character of a group of Lie type G is a multiplicity free character of shape nu (G) , where nu is a suitable degree 1 character of a Sylow p-subgroup and p is the defining characteristic of G. We show that, for an arbitrary non-abelian simple group G, if nu is a linear character of a Sylow p-subgroup of G such that nu (G) is multiplicity free, then G is isomorphic to either a group of Lie type in defining characteristic p, or to a group PSL(2, q), where either p = q + 1, or p = 2 and q + 1 or q - 1 is a 2-power.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 16 条
[1]  
[Anonymous], LECT CHEV GROUPS YAL
[2]   Prime power degree representations of the symmetric and alternating groups [J].
Balog, A ;
Bessenrodt, C ;
Olsson, JB ;
Ono, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :344-356
[3]  
Carter Roger W., 1993, FINITE GROUPS LIE TY
[4]  
Conway J. H., 1985, ATLAS of Finite Groups
[5]  
Curtis C., 1987, Methods of representation theory, VII
[6]  
Curtis Ch, 1962, Representation Theory of Finite Groups and Associative Algebras
[7]  
Digne F., 1991, London Math. Soc. Student Texts, V21
[8]  
Feit W., 1982, The Representation Theory of Finite Groups
[9]  
GELFAND IM, 1962, SOV MATH DOKL, V3, P1646
[10]   Defect zero p-blocks for finite simple groups [J].
Granville, A ;
Ono, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :331-347