An Optimal Transport View of Schrodinger's Equation

被引:32
|
作者
von Renesse, Max-K [1 ]
机构
[1] Tech Univ Berlin, Berlin, Germany
关键词
Schrodinger equation; optimal transport; Newton's law; symplectic submersion; WASSERSTEIN SPACE; INEQUALITY; GEOMETRY;
D O I
10.4153/CMB-2011-121-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Schrodinger equation is a lift of Newton's third law of motion del(W)((mu) over dot)(mu) over dot = -del F-W(mu) on the space of probability measures, where derivatives are taken with respect to the Wasserstein Riemannian metric. Here the potential mu -> F(mu) is the sum of the total classical potential energy < V, mu > of the extended system and its Fisher information h(2)/8 integral vertical bar del ln mu vertical bar(2) d mu. The precise relation is established via a well-known (Madelung) transform which is shown to be a symplectic submersion of the standard symplectic structure of complex valued functions into the canonical symplectic space over the Wasserstein space. All computations are conducted in the framework of Otto's formal Riemannian calculus for optimal transportation of probability measures.
引用
收藏
页码:858 / 869
页数:12
相关论文
共 50 条
  • [1] A discrete Schrodinger equation via optimal transport on graphs
    Chow, Shui-Nee
    Li, Wuchen
    Zhou, Haomin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (08) : 2440 - 2469
  • [2] ENTROPICAL OPTIMAL TRANSPORT, SCHRODINGER'S SYSTEM AND ALGORITHMS
    Wu, Liming
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (06) : 2183 - 2197
  • [3] Optimal Stochastic Evasive Maneuvers Using the Schrodinger's Equation
    Farokhi, Farhad
    Egerstedt, Magnus
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 517 - 522
  • [4] Optimal Control for Schrodinger's Equation with Pure Imaginary Coefficient in the Nonlinear Part of the Equation
    Mahmudov, Nurali
    2012 IV INTERNATIONAL CONFERENCE PROBLEMS OF CYBERNETICS AND INFORMATICS (PCI), 2012,
  • [5] OPTIMAL BOUNDARY CONTROL FOR A SCHRODINGER EQUATION
    Subasi, Murat
    Sener, Sidika Sule
    PACIFIC JOURNAL OF OPTIMIZATION, 2014, 10 (01): : 243 - 254
  • [6] Bilinear optimal control of a Schrodinger equation
    Cancès, E
    Le Bris, C
    Pilot, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (07): : 567 - 571
  • [7] OPTIMAL NONLINEARITY CONTROL OF SCHRODINGER EQUATION
    Wang, Kai
    Zhao, Dun
    Feng, Binhua
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (02): : 317 - 334
  • [8] Schrodinger's equation as a diffusion equation
    Mita, Katsunori
    AMERICAN JOURNAL OF PHYSICS, 2021, 89 (05) : 500 - 510
  • [9] Liouville's equation as a Schrodinger equation
    Kozlov, V. V.
    IZVESTIYA MATHEMATICS, 2014, 78 (04) : 744 - 757
  • [10] Schrodinger dynamics and optimal transport of measures
    Zanelli, Lorenzo
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2021, 24 (03)