Synchronization of the Fractional Order Finance Systems with Activation Feedback Control

被引:0
作者
Wang, Yanzhi [1 ]
Zhang, Chunrui [1 ]
机构
[1] NE Forestry Univ, Dept Math, Harbin 150040, Peoples R China
来源
ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I | 2011年 / 7002卷
关键词
Synchronization; Fractional order; Control; Chaos; Finance systems; DIFFERENTIAL-EQUATIONS; CHAOTIC SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Synchronization of fractional order chaotic dynamical systems is receiving increasing attention in recent decades. In this article, a fractional-order financial system is proposed and we utilize active control technique to synchronize this fractional order chaotic dynamical system based on the stability theory of fractional order systems. It is observed that synchronization is faster as the order tends to one. Finally, the numerical simulations are given to verify the feasibility of the results.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 50 条
  • [41] Predictive feedback control and synchronization of hyperchaotic systems
    Sadaoui, D.
    Boukabou, A.
    Hadef, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 235 - 243
  • [42] CHAOS SYNCHRONIZATION OF FRACTIONAL ORDER UNIFIED CHAOTIC SYSTEM VIA NONLINEAR CONTROL
    Chen, Xiang Rong
    Liu, Chong Xin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (03): : 407 - 415
  • [43] Adaptive Control and Synchronization for a Class of Nonlinear Fractional Order Systems with Uncertainty
    雷华静
    寇春海
    蔡锐阳
    何彬彬
    JournalofDonghuaUniversity(EnglishEdition), 2019, 36 (04) : 405 - 412
  • [44] Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique
    Matouk, A. E.
    Elsadany, A. A.
    APPLIED MATHEMATICS LETTERS, 2014, 29 : 30 - 35
  • [45] An adaptive feedback control for chaos synchronization of nonlinear systems with different order
    Lazzouni, Sihem A.
    Bowong, Samuel
    Kakmeni, F. M. Moukam
    Cherki, Brahim
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (04) : 568 - 583
  • [46] Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional-order systems
    Abed-Elhameed, Tarek M.
    Aboelenen, Tarek
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [47] Event-based delayed impulsive control for fractional-order dynamic systems with application to synchronization of fractional-order neural networks
    Zheng, Bibo
    Wang, Zhanshan
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (27) : 20241 - 20251
  • [48] Synchronization of nonlinear fractional order systems by means of PIrα reduced order observer
    Cruz-Victoria, Juan C.
    Martinez-Guerra, Rafael
    Perez-Pinacho, Claudia A.
    Carlo Gomez-Cortes, Gian
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 : 224 - 231
  • [49] The Synchronization of Three Fractional-Order Lorenz Chaotic Systems
    Yu, Yong-Guang
    Wen, Guo-Guang
    Li, Han-Xiong
    Diao, Miao
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (03) : 379 - 386
  • [50] Modified projective synchronization of uncertain fractional order hyperchaotic systems
    Bai, Jing
    Yu, Yongguang
    Wang, Sha
    Song, Yu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1921 - 1928