A procedure to construct exact solutions of nonlinear evolution equations

被引:55
作者
Cevikel, Adem Cengiz [1 ]
Bekir, Ahmet [2 ]
Akar, Mutlu [3 ]
San, Sait [2 ]
机构
[1] Yildiz Tech Univ, Fac Educ, Dept Math Educ, TR-34210 Istanbul, Turkey
[2] Eskisehir Osmangazi Univ, Fac Arts & Sci, Dept Math & Comp Sci, Eskisehir, Turkey
[3] Yildiz Tech Univ, Fac Arts & Sci, Dept Math, TR-34210 Istanbul, Turkey
来源
PRAMANA-JOURNAL OF PHYSICS | 2012年 / 79卷 / 03期
关键词
Exact solutions; the functional variable method; nonlinear wave equations; TRAVELING-WAVE SOLUTIONS; EXP-FUNCTION METHOD; SINE-COSINE METHOD; (G'/G)-EXPANSION METHOD; TANH METHOD; MBBM;
D O I
10.1007/s12043-012-0326-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we implemented the functional variable method for the exact solutions of the Zakharov-Kuznetsov-modified equal-width (ZK-MEW), the modified Benjamin-Bona-Mahony (mBBM) and the modified KdV-Kadomtsev-Petviashvili (KdV-KP) equations. By using this scheme, we found some exact solutions of the above-mentioned equations. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. The functional variable method presents a wider applicability for handling nonlinear wave equations.
引用
收藏
页码:337 / 344
页数:8
相关论文
共 31 条
[1]   The first integral method for modified Benjamin-Bona-Mahony equation [J].
Abbasbandy, S. ;
Shirzadi, A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (07) :1759-1764
[2]  
Ablowitz M J., 1990, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform
[3]   Application of the (G′/G)-expansion method for nonlinear evolution equations [J].
Bekir, Ahmet .
PHYSICS LETTERS A, 2008, 372 (19) :3400-3406
[4]   Exact solutions for nonlinear evolution equations using Exp-function method [J].
Bekir, Ahmet ;
Boz, Ahmet .
PHYSICS LETTERS A, 2008, 372 (10) :1619-1625
[5]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[6]  
Fan E, 2001, APPL MATH J CHINES B, V16, P149
[7]   Exp-function method for nonlinear wave equations [J].
He, Ji-Huan ;
Wu, Xu-Hong .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :700-708
[8]  
Hirota R., 1980, BACKLUND TRANSFORM
[9]   Exact solutions of the (2+1)-dimensional Zakharov-Kuznetsov modified equal width equation using Lie group analysis [J].
Khalique, C. M. ;
Adem, K. R. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) :184-189
[10]   A new hyperbolic auxiliary function method and exact solutions of the mBBM equation [J].
Layeni, Olawanle P. ;
Akinola, Ade P. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) :135-138